Copied to
clipboard

?

G = C5⋊C8⋊D4order 320 = 26·5

1st semidirect product of C5⋊C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5⋊C84D4, C2.6(D4×F5), C51(C89D4), C20⋊C89C2, C10.2(C4×D4), D10⋊C87C2, C22⋊C4.2F5, C10.3(C8○D4), (C2×C10)⋊1M4(2), C2.6(D4.F5), C221(C4.F5), C23.25(C2×F5), D10⋊C4.1C4, Dic5.66(C2×D4), C10.D4.1C4, C23.2F54C2, C10.C429C2, Dic54D4.7C2, C10.10(C2×M4(2)), Dic5.51(C4○D4), C22.69(C22×F5), (C2×Dic5).323C23, (C4×Dic5).240C22, (C22×Dic5).178C22, (C22×C5⋊C8)⋊2C2, (C2×C4.F5)⋊9C2, C2.8(C2×C4.F5), (C2×C5⋊D4).4C4, (C2×C4).20(C2×F5), (C2×C20).78(C2×C4), (C5×C22⋊C4).2C4, (C2×C5⋊C8).21C22, (C2×C4×D5).273C22, (C2×C10).31(C22×C4), (C22×C10).14(C2×C4), (C2×Dic5).48(C2×C4), (C22×D5).40(C2×C4), SmallGroup(320,1031)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C5⋊C8⋊D4
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — C5⋊C8⋊D4
C5C2×C10 — C5⋊C8⋊D4

Subgroups: 442 in 124 conjugacy classes, 48 normal (42 characteristic)
C1, C2 [×3], C2 [×3], C4 [×6], C22, C22 [×2], C22 [×5], C5, C8 [×5], C2×C4 [×2], C2×C4 [×7], D4 [×2], C23, C23, D5, C10 [×3], C10 [×2], C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8 [×6], M4(2) [×2], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×2], C20 [×2], D10 [×3], C2×C10, C2×C10 [×2], C2×C10 [×2], C8⋊C4, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×2], C2×C20 [×2], C22×D5, C22×C10, C89D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, C4.F5 [×2], C2×C5⋊C8 [×4], C2×C5⋊C8 [×2], C2×C4×D5, C22×Dic5, C2×C5⋊D4, C20⋊C8, C10.C42, D10⋊C8, C23.2F5, Dic54D4, C2×C4.F5, C22×C5⋊C8, C5⋊C8⋊D4

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, M4(2) [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5 [×3], C89D4, C4.F5 [×2], C22×F5, C2×C4.F5, D4.F5, D4×F5, C5⋊C8⋊D4

Generators and relations
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, cac-1=a-1, ad=da, cbc-1=b5, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 65 86 36 159)(2 37 66 160 87)(3 153 38 88 67)(4 81 154 68 39)(5 69 82 40 155)(6 33 70 156 83)(7 157 34 84 71)(8 85 158 72 35)(9 131 60 99 43)(10 100 132 44 61)(11 45 101 62 133)(12 63 46 134 102)(13 135 64 103 47)(14 104 136 48 57)(15 41 97 58 129)(16 59 42 130 98)(17 116 121 89 144)(18 90 117 137 122)(19 138 91 123 118)(20 124 139 119 92)(21 120 125 93 140)(22 94 113 141 126)(23 142 95 127 114)(24 128 143 115 96)(25 52 74 150 112)(26 151 53 105 75)(27 106 152 76 54)(28 77 107 55 145)(29 56 78 146 108)(30 147 49 109 79)(31 110 148 80 50)(32 73 111 51 149)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 78 16 96)(2 75 9 93)(3 80 10 90)(4 77 11 95)(5 74 12 92)(6 79 13 89)(7 76 14 94)(8 73 15 91)(17 156 147 103)(18 153 148 100)(19 158 149 97)(20 155 150 102)(21 160 151 99)(22 157 152 104)(23 154 145 101)(24 159 146 98)(25 46 139 82)(26 43 140 87)(27 48 141 84)(28 45 142 81)(29 42 143 86)(30 47 144 83)(31 44 137 88)(32 41 138 85)(33 109 135 121)(34 106 136 126)(35 111 129 123)(36 108 130 128)(37 105 131 125)(38 110 132 122)(39 107 133 127)(40 112 134 124)(49 64 116 70)(50 61 117 67)(51 58 118 72)(52 63 119 69)(53 60 120 66)(54 57 113 71)(55 62 114 68)(56 59 115 65)
(1 96)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 79)(10 80)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 65)(25 134)(26 135)(27 136)(28 129)(29 130)(30 131)(31 132)(32 133)(33 140)(34 141)(35 142)(36 143)(37 144)(38 137)(39 138)(40 139)(41 107)(42 108)(43 109)(44 110)(45 111)(46 112)(47 105)(48 106)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 97)(56 98)(57 152)(58 145)(59 146)(60 147)(61 148)(62 149)(63 150)(64 151)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 121)(88 122)(113 157)(114 158)(115 159)(116 160)(117 153)(118 154)(119 155)(120 156)

G:=sub<Sym(160)| (1,65,86,36,159)(2,37,66,160,87)(3,153,38,88,67)(4,81,154,68,39)(5,69,82,40,155)(6,33,70,156,83)(7,157,34,84,71)(8,85,158,72,35)(9,131,60,99,43)(10,100,132,44,61)(11,45,101,62,133)(12,63,46,134,102)(13,135,64,103,47)(14,104,136,48,57)(15,41,97,58,129)(16,59,42,130,98)(17,116,121,89,144)(18,90,117,137,122)(19,138,91,123,118)(20,124,139,119,92)(21,120,125,93,140)(22,94,113,141,126)(23,142,95,127,114)(24,128,143,115,96)(25,52,74,150,112)(26,151,53,105,75)(27,106,152,76,54)(28,77,107,55,145)(29,56,78,146,108)(30,147,49,109,79)(31,110,148,80,50)(32,73,111,51,149), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,16,96)(2,75,9,93)(3,80,10,90)(4,77,11,95)(5,74,12,92)(6,79,13,89)(7,76,14,94)(8,73,15,91)(17,156,147,103)(18,153,148,100)(19,158,149,97)(20,155,150,102)(21,160,151,99)(22,157,152,104)(23,154,145,101)(24,159,146,98)(25,46,139,82)(26,43,140,87)(27,48,141,84)(28,45,142,81)(29,42,143,86)(30,47,144,83)(31,44,137,88)(32,41,138,85)(33,109,135,121)(34,106,136,126)(35,111,129,123)(36,108,130,128)(37,105,131,125)(38,110,132,122)(39,107,133,127)(40,112,134,124)(49,64,116,70)(50,61,117,67)(51,58,118,72)(52,63,119,69)(53,60,120,66)(54,57,113,71)(55,62,114,68)(56,59,115,65), (1,96)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,79)(10,80)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,65)(25,134)(26,135)(27,136)(28,129)(29,130)(30,131)(31,132)(32,133)(33,140)(34,141)(35,142)(36,143)(37,144)(38,137)(39,138)(40,139)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,105)(48,106)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(57,152)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,121)(88,122)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156)>;

G:=Group( (1,65,86,36,159)(2,37,66,160,87)(3,153,38,88,67)(4,81,154,68,39)(5,69,82,40,155)(6,33,70,156,83)(7,157,34,84,71)(8,85,158,72,35)(9,131,60,99,43)(10,100,132,44,61)(11,45,101,62,133)(12,63,46,134,102)(13,135,64,103,47)(14,104,136,48,57)(15,41,97,58,129)(16,59,42,130,98)(17,116,121,89,144)(18,90,117,137,122)(19,138,91,123,118)(20,124,139,119,92)(21,120,125,93,140)(22,94,113,141,126)(23,142,95,127,114)(24,128,143,115,96)(25,52,74,150,112)(26,151,53,105,75)(27,106,152,76,54)(28,77,107,55,145)(29,56,78,146,108)(30,147,49,109,79)(31,110,148,80,50)(32,73,111,51,149), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,16,96)(2,75,9,93)(3,80,10,90)(4,77,11,95)(5,74,12,92)(6,79,13,89)(7,76,14,94)(8,73,15,91)(17,156,147,103)(18,153,148,100)(19,158,149,97)(20,155,150,102)(21,160,151,99)(22,157,152,104)(23,154,145,101)(24,159,146,98)(25,46,139,82)(26,43,140,87)(27,48,141,84)(28,45,142,81)(29,42,143,86)(30,47,144,83)(31,44,137,88)(32,41,138,85)(33,109,135,121)(34,106,136,126)(35,111,129,123)(36,108,130,128)(37,105,131,125)(38,110,132,122)(39,107,133,127)(40,112,134,124)(49,64,116,70)(50,61,117,67)(51,58,118,72)(52,63,119,69)(53,60,120,66)(54,57,113,71)(55,62,114,68)(56,59,115,65), (1,96)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,79)(10,80)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,65)(25,134)(26,135)(27,136)(28,129)(29,130)(30,131)(31,132)(32,133)(33,140)(34,141)(35,142)(36,143)(37,144)(38,137)(39,138)(40,139)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,105)(48,106)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(57,152)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,121)(88,122)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156) );

G=PermutationGroup([(1,65,86,36,159),(2,37,66,160,87),(3,153,38,88,67),(4,81,154,68,39),(5,69,82,40,155),(6,33,70,156,83),(7,157,34,84,71),(8,85,158,72,35),(9,131,60,99,43),(10,100,132,44,61),(11,45,101,62,133),(12,63,46,134,102),(13,135,64,103,47),(14,104,136,48,57),(15,41,97,58,129),(16,59,42,130,98),(17,116,121,89,144),(18,90,117,137,122),(19,138,91,123,118),(20,124,139,119,92),(21,120,125,93,140),(22,94,113,141,126),(23,142,95,127,114),(24,128,143,115,96),(25,52,74,150,112),(26,151,53,105,75),(27,106,152,76,54),(28,77,107,55,145),(29,56,78,146,108),(30,147,49,109,79),(31,110,148,80,50),(32,73,111,51,149)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,78,16,96),(2,75,9,93),(3,80,10,90),(4,77,11,95),(5,74,12,92),(6,79,13,89),(7,76,14,94),(8,73,15,91),(17,156,147,103),(18,153,148,100),(19,158,149,97),(20,155,150,102),(21,160,151,99),(22,157,152,104),(23,154,145,101),(24,159,146,98),(25,46,139,82),(26,43,140,87),(27,48,141,84),(28,45,142,81),(29,42,143,86),(30,47,144,83),(31,44,137,88),(32,41,138,85),(33,109,135,121),(34,106,136,126),(35,111,129,123),(36,108,130,128),(37,105,131,125),(38,110,132,122),(39,107,133,127),(40,112,134,124),(49,64,116,70),(50,61,117,67),(51,58,118,72),(52,63,119,69),(53,60,120,66),(54,57,113,71),(55,62,114,68),(56,59,115,65)], [(1,96),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,79),(10,80),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,65),(25,134),(26,135),(27,136),(28,129),(29,130),(30,131),(31,132),(32,133),(33,140),(34,141),(35,142),(36,143),(37,144),(38,137),(39,138),(40,139),(41,107),(42,108),(43,109),(44,110),(45,111),(46,112),(47,105),(48,106),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,97),(56,98),(57,152),(58,145),(59,146),(60,147),(61,148),(62,149),(63,150),(64,151),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,121),(88,122),(113,157),(114,158),(115,159),(116,160),(117,153),(118,154),(119,155),(120,156)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
000000040
000010040
000001040
000000140
,
382000000
03000000
00100000
00010000
000093200
000093209
000090329
000000329
,
10000000
340000000
00010000
004000000
000000040
000000400
000004000
000040000
,
10000000
01000000
00010000
00100000
000040000
000004000
000000400
000000040

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[38,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,9,9,9,0,0,0,0,0,32,32,0,0,0,0,0,0,0,0,32,32,0,0,0,0,0,9,9,9],[1,3,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C10D10E20A20B20C20D
order122222244444444458···88888101010101020202020
size11112220445555101020410···1020202020444888888

38 irreducible representations

dim1111111111112222444488
type++++++++++++-+
imageC1C2C2C2C2C2C2C2C4C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5C2×F5C4.F5D4.F5D4×F5
kernelC5⋊C8⋊D4C20⋊C8C10.C42D10⋊C8C23.2F5Dic54D4C2×C4.F5C22×C5⋊C8C10.D4D10⋊C4C5×C22⋊C4C2×C5⋊D4C5⋊C8Dic5C2×C10C10C22⋊C4C2×C4C23C22C2C2
# reps1111111122222244121411

In GAP, Magma, Sage, TeX

C_5\rtimes C_8\rtimes D_4
% in TeX

G:=Group("C5:C8:D4");
// GroupNames label

G:=SmallGroup(320,1031);
// by ID

G=gap.SmallGroup(320,1031);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^5,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽