Copied to
clipboard

?

G = Dic1021D4order 320 = 26·5

9th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1021D4, C10.762- (1+4), C53(D4×Q8), C5⋊D41Q8, C20⋊Q825C2, D106(C2×Q8), C22⋊Q89D5, C221(Q8×D5), Dic54(C2×Q8), C4.113(D4×D5), C4⋊C4.190D10, C20.236(C2×D4), D102Q826C2, D10⋊Q819C2, (C2×C20).55C23, (C2×Q8).127D10, C22⋊C4.58D10, Dic5.48(C2×D4), C10.78(C22×D4), Dic53Q825C2, Dic5⋊Q815C2, C10.35(C22×Q8), (C2×C10).176C24, Dic54D4.1C2, (C22×C4).238D10, (C22×Dic10)⋊17C2, C4⋊Dic5.216C22, (Q8×C10).108C22, C22.197(C23×D5), C23.190(C22×D5), Dic5.14D423C2, (C22×C20).256C22, (C22×C10).204C23, (C4×Dic5).114C22, (C2×Dic5).245C23, C10.D4.28C22, (C22×D5).208C23, C2.36(D4.10D10), C23.D5.117C22, D10⋊C4.107C22, (C2×Dic10).256C22, (C22×Dic5).118C22, (C2×Q8×D5)⋊7C2, C2.51(C2×D4×D5), C2.18(C2×Q8×D5), (C2×C10)⋊3(C2×Q8), (C4×C5⋊D4).7C2, (C5×C22⋊Q8)⋊12C2, (C2×C4×D5).105C22, (C2×C4).49(C22×D5), (C5×C4⋊C4).159C22, (C2×C5⋊D4).132C22, (C5×C22⋊C4).31C22, SmallGroup(320,1304)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1021D4
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — Dic1021D4
C5C2×C10 — Dic1021D4

Subgroups: 934 in 280 conjugacy classes, 115 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×15], C22, C22 [×2], C22 [×6], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×19], D4 [×4], Q8 [×16], C23, C23, D5 [×2], C10 [×3], C10 [×2], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×9], C22×C4, C22×C4 [×5], C2×D4, C2×Q8, C2×Q8 [×14], Dic5 [×6], Dic5 [×4], C20 [×2], C20 [×5], D10 [×2], D10 [×2], C2×C10, C2×C10 [×2], C2×C10 [×2], C4×D4 [×3], C4×Q8, C22⋊Q8, C22⋊Q8 [×5], C4⋊Q8 [×3], C22×Q8 [×2], Dic10 [×4], Dic10 [×10], C4×D5 [×6], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5, C22×C10, D4×Q8, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×6], C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10 [×2], C2×Dic10 [×4], C2×Dic10 [×4], C2×C4×D5, C2×C4×D5 [×2], Q8×D5 [×4], C22×Dic5 [×2], C2×C5⋊D4, C22×C20, Q8×C10, Dic5.14D4 [×2], Dic54D4 [×2], Dic53Q8, C20⋊Q8 [×2], D10⋊Q8 [×2], D102Q8, C4×C5⋊D4, Dic5⋊Q8, C5×C22⋊Q8, C22×Dic10, C2×Q8×D5, Dic1021D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C24, D10 [×7], C22×D4, C22×Q8, 2- (1+4), C22×D5 [×7], D4×Q8, D4×D5 [×2], Q8×D5 [×2], C23×D5, C2×D4×D5, C2×Q8×D5, D4.10D10, Dic1021D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a9, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 71 11 61)(2 70 12 80)(3 69 13 79)(4 68 14 78)(5 67 15 77)(6 66 16 76)(7 65 17 75)(8 64 18 74)(9 63 19 73)(10 62 20 72)(21 116 31 106)(22 115 32 105)(23 114 33 104)(24 113 34 103)(25 112 35 102)(26 111 36 101)(27 110 37 120)(28 109 38 119)(29 108 39 118)(30 107 40 117)(41 160 51 150)(42 159 52 149)(43 158 53 148)(44 157 54 147)(45 156 55 146)(46 155 56 145)(47 154 57 144)(48 153 58 143)(49 152 59 142)(50 151 60 141)(81 136 91 126)(82 135 92 125)(83 134 93 124)(84 133 94 123)(85 132 95 122)(86 131 96 121)(87 130 97 140)(88 129 98 139)(89 128 99 138)(90 127 100 137)
(1 28 145 85)(2 37 146 94)(3 26 147 83)(4 35 148 92)(5 24 149 81)(6 33 150 90)(7 22 151 99)(8 31 152 88)(9 40 153 97)(10 29 154 86)(11 38 155 95)(12 27 156 84)(13 36 157 93)(14 25 158 82)(15 34 159 91)(16 23 160 100)(17 32 141 89)(18 21 142 98)(19 30 143 87)(20 39 144 96)(41 127 66 104)(42 136 67 113)(43 125 68 102)(44 134 69 111)(45 123 70 120)(46 132 71 109)(47 121 72 118)(48 130 73 107)(49 139 74 116)(50 128 75 105)(51 137 76 114)(52 126 77 103)(53 135 78 112)(54 124 79 101)(55 133 80 110)(56 122 61 119)(57 131 62 108)(58 140 63 117)(59 129 64 106)(60 138 65 115)
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 81)(18 82)(19 83)(20 84)(21 158)(22 159)(23 160)(24 141)(25 142)(26 143)(27 144)(28 145)(29 146)(30 147)(31 148)(32 149)(33 150)(34 151)(35 152)(36 153)(37 154)(38 155)(39 156)(40 157)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 101)(59 102)(60 103)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 130)(70 131)(71 132)(72 133)(73 134)(74 135)(75 136)(76 137)(77 138)(78 139)(79 140)(80 121)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,71,11,61)(2,70,12,80)(3,69,13,79)(4,68,14,78)(5,67,15,77)(6,66,16,76)(7,65,17,75)(8,64,18,74)(9,63,19,73)(10,62,20,72)(21,116,31,106)(22,115,32,105)(23,114,33,104)(24,113,34,103)(25,112,35,102)(26,111,36,101)(27,110,37,120)(28,109,38,119)(29,108,39,118)(30,107,40,117)(41,160,51,150)(42,159,52,149)(43,158,53,148)(44,157,54,147)(45,156,55,146)(46,155,56,145)(47,154,57,144)(48,153,58,143)(49,152,59,142)(50,151,60,141)(81,136,91,126)(82,135,92,125)(83,134,93,124)(84,133,94,123)(85,132,95,122)(86,131,96,121)(87,130,97,140)(88,129,98,139)(89,128,99,138)(90,127,100,137), (1,28,145,85)(2,37,146,94)(3,26,147,83)(4,35,148,92)(5,24,149,81)(6,33,150,90)(7,22,151,99)(8,31,152,88)(9,40,153,97)(10,29,154,86)(11,38,155,95)(12,27,156,84)(13,36,157,93)(14,25,158,82)(15,34,159,91)(16,23,160,100)(17,32,141,89)(18,21,142,98)(19,30,143,87)(20,39,144,96)(41,127,66,104)(42,136,67,113)(43,125,68,102)(44,134,69,111)(45,123,70,120)(46,132,71,109)(47,121,72,118)(48,130,73,107)(49,139,74,116)(50,128,75,105)(51,137,76,114)(52,126,77,103)(53,135,78,112)(54,124,79,101)(55,133,80,110)(56,122,61,119)(57,131,62,108)(58,140,63,117)(59,129,64,106)(60,138,65,115), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,158)(22,159)(23,160)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,101)(59,102)(60,103)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,121)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,71,11,61)(2,70,12,80)(3,69,13,79)(4,68,14,78)(5,67,15,77)(6,66,16,76)(7,65,17,75)(8,64,18,74)(9,63,19,73)(10,62,20,72)(21,116,31,106)(22,115,32,105)(23,114,33,104)(24,113,34,103)(25,112,35,102)(26,111,36,101)(27,110,37,120)(28,109,38,119)(29,108,39,118)(30,107,40,117)(41,160,51,150)(42,159,52,149)(43,158,53,148)(44,157,54,147)(45,156,55,146)(46,155,56,145)(47,154,57,144)(48,153,58,143)(49,152,59,142)(50,151,60,141)(81,136,91,126)(82,135,92,125)(83,134,93,124)(84,133,94,123)(85,132,95,122)(86,131,96,121)(87,130,97,140)(88,129,98,139)(89,128,99,138)(90,127,100,137), (1,28,145,85)(2,37,146,94)(3,26,147,83)(4,35,148,92)(5,24,149,81)(6,33,150,90)(7,22,151,99)(8,31,152,88)(9,40,153,97)(10,29,154,86)(11,38,155,95)(12,27,156,84)(13,36,157,93)(14,25,158,82)(15,34,159,91)(16,23,160,100)(17,32,141,89)(18,21,142,98)(19,30,143,87)(20,39,144,96)(41,127,66,104)(42,136,67,113)(43,125,68,102)(44,134,69,111)(45,123,70,120)(46,132,71,109)(47,121,72,118)(48,130,73,107)(49,139,74,116)(50,128,75,105)(51,137,76,114)(52,126,77,103)(53,135,78,112)(54,124,79,101)(55,133,80,110)(56,122,61,119)(57,131,62,108)(58,140,63,117)(59,129,64,106)(60,138,65,115), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,158)(22,159)(23,160)(24,141)(25,142)(26,143)(27,144)(28,145)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,155)(39,156)(40,157)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,101)(59,102)(60,103)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,131)(71,132)(72,133)(73,134)(74,135)(75,136)(76,137)(77,138)(78,139)(79,140)(80,121) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,71,11,61),(2,70,12,80),(3,69,13,79),(4,68,14,78),(5,67,15,77),(6,66,16,76),(7,65,17,75),(8,64,18,74),(9,63,19,73),(10,62,20,72),(21,116,31,106),(22,115,32,105),(23,114,33,104),(24,113,34,103),(25,112,35,102),(26,111,36,101),(27,110,37,120),(28,109,38,119),(29,108,39,118),(30,107,40,117),(41,160,51,150),(42,159,52,149),(43,158,53,148),(44,157,54,147),(45,156,55,146),(46,155,56,145),(47,154,57,144),(48,153,58,143),(49,152,59,142),(50,151,60,141),(81,136,91,126),(82,135,92,125),(83,134,93,124),(84,133,94,123),(85,132,95,122),(86,131,96,121),(87,130,97,140),(88,129,98,139),(89,128,99,138),(90,127,100,137)], [(1,28,145,85),(2,37,146,94),(3,26,147,83),(4,35,148,92),(5,24,149,81),(6,33,150,90),(7,22,151,99),(8,31,152,88),(9,40,153,97),(10,29,154,86),(11,38,155,95),(12,27,156,84),(13,36,157,93),(14,25,158,82),(15,34,159,91),(16,23,160,100),(17,32,141,89),(18,21,142,98),(19,30,143,87),(20,39,144,96),(41,127,66,104),(42,136,67,113),(43,125,68,102),(44,134,69,111),(45,123,70,120),(46,132,71,109),(47,121,72,118),(48,130,73,107),(49,139,74,116),(50,128,75,105),(51,137,76,114),(52,126,77,103),(53,135,78,112),(54,124,79,101),(55,133,80,110),(56,122,61,119),(57,131,62,108),(58,140,63,117),(59,129,64,106),(60,138,65,115)], [(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,81),(18,82),(19,83),(20,84),(21,158),(22,159),(23,160),(24,141),(25,142),(26,143),(27,144),(28,145),(29,146),(30,147),(31,148),(32,149),(33,150),(34,151),(35,152),(36,153),(37,154),(38,155),(39,156),(40,157),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,101),(59,102),(60,103),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,130),(70,131),(71,132),(72,133),(73,134),(74,135),(75,136),(76,137),(77,138),(78,139),(79,140),(80,121)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0040100
0053500
0000130
00003040
,
4000000
0400000
006100
0063500
000001
0000400
,
950000
0320000
00354000
0035600
0000400
0000040
,
950000
25320000
0040000
0004000
0000400
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,30,0,0,0,0,30,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,6,0,0,0,0,1,35,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[9,0,0,0,0,0,5,32,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,25,0,0,0,0,5,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4G4H···4M4N4O4P4Q5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222444···44···444445510···101010101020···2020···20
size1111221010224···410···1020202020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type+++++++++++++-+++++-+--
imageC1C2C2C2C2C2C2C2C2C2C2C2D4Q8D5D10D10D10D102- (1+4)D4×D5Q8×D5D4.10D10
kernelDic1021D4Dic5.14D4Dic54D4Dic53Q8C20⋊Q8D10⋊Q8D102Q8C4×C5⋊D4Dic5⋊Q8C5×C22⋊Q8C22×Dic10C2×Q8×D5Dic10C5⋊D4C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8C10C4C22C2
# reps12212211111144246221444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{21}D_4
% in TeX

G:=Group("Dic10:21D4");
// GroupNames label

G:=SmallGroup(320,1304);
// by ID

G=gap.SmallGroup(320,1304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,570,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^9,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽