Copied to
clipboard

?

G = Dic1022D4order 320 = 26·5

10th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1022D4, C10.192- (1+4), C54(Q85D4), C4.114(D4×D5), C22⋊Q810D5, C42D2026C2, C4⋊C4.191D10, C20.237(C2×D4), D1014(C4○D4), D10⋊D426C2, D208C427C2, D10⋊Q820C2, (C2×C20).56C23, (C2×Q8).128D10, C22⋊C4.17D10, Dic5.49(C2×D4), C10.79(C22×D4), Dic53Q826C2, C20.23D413C2, (C2×C10).177C24, (C22×C4).239D10, Dic5.5D425C2, (C2×D20).273C22, (Q8×C10).109C22, C23.120(C22×D5), C22.198(C23×D5), (C22×C20).257C22, (C22×C10).205C23, (C4×Dic5).115C22, (C2×Dic5).246C23, C10.D4.29C22, (C22×D5).209C23, C23.D5.118C22, D10⋊C4.128C22, C2.20(Q8.10D10), (C2×Dic10).303C22, (C2×Q8×D5)⋊8C2, C2.52(C2×D4×D5), (C4×C5⋊D4)⋊24C2, C2.50(D5×C4○D4), (C2×C4○D20)⋊25C2, (C5×C22⋊Q8)⋊13C2, C10.162(C2×C4○D4), (C2×C4×D5).106C22, (C5×C4⋊C4).160C22, (C2×C4).592(C22×D5), (C2×C5⋊D4).133C22, (C5×C22⋊C4).32C22, SmallGroup(320,1305)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1022D4
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — Dic1022D4
C5C2×C10 — Dic1022D4

Subgroups: 1078 in 290 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×12], C22, C22 [×13], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×17], D4 [×12], Q8 [×10], C23, C23 [×3], D5 [×4], C10 [×3], C10, C42 [×3], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×3], C22×C4, C22×C4 [×5], C2×D4 [×6], C2×Q8, C2×Q8 [×7], C4○D4 [×4], Dic5 [×4], Dic5 [×3], C20 [×2], C20 [×5], D10 [×2], D10 [×8], C2×C10, C2×C10 [×3], C4×D4 [×3], C4×Q8, C4⋊D4 [×3], C22⋊Q8, C22⋊Q8 [×2], C4.4D4 [×3], C22×Q8, C2×C4○D4, Dic10 [×4], Dic10 [×4], C4×D5 [×10], D20 [×6], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5, C22×D5 [×2], C22×C10, Q85D4, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×2], D10⋊C4, D10⋊C4 [×6], C23.D5, C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×4], C2×D20, C2×D20 [×2], C4○D20 [×4], Q8×D5 [×4], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, Q8×C10, D10⋊D4 [×2], Dic5.5D4 [×2], Dic53Q8, D208C4 [×2], C42D20, D10⋊Q8 [×2], C4×C5⋊D4, C20.23D4, C5×C22⋊Q8, C2×C4○D20, C2×Q8×D5, Dic1022D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], Q85D4, D4×D5 [×2], C23×D5, C2×D4×D5, Q8.10D10, D5×C4○D4, Dic1022D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=dad=a9, cbc-1=a10b, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 98 11 88)(2 97 12 87)(3 96 13 86)(4 95 14 85)(5 94 15 84)(6 93 16 83)(7 92 17 82)(8 91 18 81)(9 90 19 100)(10 89 20 99)(21 77 31 67)(22 76 32 66)(23 75 33 65)(24 74 34 64)(25 73 35 63)(26 72 36 62)(27 71 37 61)(28 70 38 80)(29 69 39 79)(30 68 40 78)(41 125 51 135)(42 124 52 134)(43 123 53 133)(44 122 54 132)(45 121 55 131)(46 140 56 130)(47 139 57 129)(48 138 58 128)(49 137 59 127)(50 136 60 126)(101 149 111 159)(102 148 112 158)(103 147 113 157)(104 146 114 156)(105 145 115 155)(106 144 116 154)(107 143 117 153)(108 142 118 152)(109 141 119 151)(110 160 120 150)
(1 63 128 115)(2 72 129 104)(3 61 130 113)(4 70 131 102)(5 79 132 111)(6 68 133 120)(7 77 134 109)(8 66 135 118)(9 75 136 107)(10 64 137 116)(11 73 138 105)(12 62 139 114)(13 71 140 103)(14 80 121 112)(15 69 122 101)(16 78 123 110)(17 67 124 119)(18 76 125 108)(19 65 126 117)(20 74 127 106)(21 42 151 92)(22 51 152 81)(23 60 153 90)(24 49 154 99)(25 58 155 88)(26 47 156 97)(27 56 157 86)(28 45 158 95)(29 54 159 84)(30 43 160 93)(31 52 141 82)(32 41 142 91)(33 50 143 100)(34 59 144 89)(35 48 145 98)(36 57 146 87)(37 46 147 96)(38 55 148 85)(39 44 149 94)(40 53 150 83)
(1 145)(2 154)(3 143)(4 152)(5 141)(6 150)(7 159)(8 148)(9 157)(10 146)(11 155)(12 144)(13 153)(14 142)(15 151)(16 160)(17 149)(18 158)(19 147)(20 156)(21 122)(22 131)(23 140)(24 129)(25 138)(26 127)(27 136)(28 125)(29 134)(30 123)(31 132)(32 121)(33 130)(34 139)(35 128)(36 137)(37 126)(38 135)(39 124)(40 133)(41 80)(42 69)(43 78)(44 67)(45 76)(46 65)(47 74)(48 63)(49 72)(50 61)(51 70)(52 79)(53 68)(54 77)(55 66)(56 75)(57 64)(58 73)(59 62)(60 71)(81 102)(82 111)(83 120)(84 109)(85 118)(86 107)(87 116)(88 105)(89 114)(90 103)(91 112)(92 101)(93 110)(94 119)(95 108)(96 117)(97 106)(98 115)(99 104)(100 113)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,98,11,88)(2,97,12,87)(3,96,13,86)(4,95,14,85)(5,94,15,84)(6,93,16,83)(7,92,17,82)(8,91,18,81)(9,90,19,100)(10,89,20,99)(21,77,31,67)(22,76,32,66)(23,75,33,65)(24,74,34,64)(25,73,35,63)(26,72,36,62)(27,71,37,61)(28,70,38,80)(29,69,39,79)(30,68,40,78)(41,125,51,135)(42,124,52,134)(43,123,53,133)(44,122,54,132)(45,121,55,131)(46,140,56,130)(47,139,57,129)(48,138,58,128)(49,137,59,127)(50,136,60,126)(101,149,111,159)(102,148,112,158)(103,147,113,157)(104,146,114,156)(105,145,115,155)(106,144,116,154)(107,143,117,153)(108,142,118,152)(109,141,119,151)(110,160,120,150), (1,63,128,115)(2,72,129,104)(3,61,130,113)(4,70,131,102)(5,79,132,111)(6,68,133,120)(7,77,134,109)(8,66,135,118)(9,75,136,107)(10,64,137,116)(11,73,138,105)(12,62,139,114)(13,71,140,103)(14,80,121,112)(15,69,122,101)(16,78,123,110)(17,67,124,119)(18,76,125,108)(19,65,126,117)(20,74,127,106)(21,42,151,92)(22,51,152,81)(23,60,153,90)(24,49,154,99)(25,58,155,88)(26,47,156,97)(27,56,157,86)(28,45,158,95)(29,54,159,84)(30,43,160,93)(31,52,141,82)(32,41,142,91)(33,50,143,100)(34,59,144,89)(35,48,145,98)(36,57,146,87)(37,46,147,96)(38,55,148,85)(39,44,149,94)(40,53,150,83), (1,145)(2,154)(3,143)(4,152)(5,141)(6,150)(7,159)(8,148)(9,157)(10,146)(11,155)(12,144)(13,153)(14,142)(15,151)(16,160)(17,149)(18,158)(19,147)(20,156)(21,122)(22,131)(23,140)(24,129)(25,138)(26,127)(27,136)(28,125)(29,134)(30,123)(31,132)(32,121)(33,130)(34,139)(35,128)(36,137)(37,126)(38,135)(39,124)(40,133)(41,80)(42,69)(43,78)(44,67)(45,76)(46,65)(47,74)(48,63)(49,72)(50,61)(51,70)(52,79)(53,68)(54,77)(55,66)(56,75)(57,64)(58,73)(59,62)(60,71)(81,102)(82,111)(83,120)(84,109)(85,118)(86,107)(87,116)(88,105)(89,114)(90,103)(91,112)(92,101)(93,110)(94,119)(95,108)(96,117)(97,106)(98,115)(99,104)(100,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,98,11,88)(2,97,12,87)(3,96,13,86)(4,95,14,85)(5,94,15,84)(6,93,16,83)(7,92,17,82)(8,91,18,81)(9,90,19,100)(10,89,20,99)(21,77,31,67)(22,76,32,66)(23,75,33,65)(24,74,34,64)(25,73,35,63)(26,72,36,62)(27,71,37,61)(28,70,38,80)(29,69,39,79)(30,68,40,78)(41,125,51,135)(42,124,52,134)(43,123,53,133)(44,122,54,132)(45,121,55,131)(46,140,56,130)(47,139,57,129)(48,138,58,128)(49,137,59,127)(50,136,60,126)(101,149,111,159)(102,148,112,158)(103,147,113,157)(104,146,114,156)(105,145,115,155)(106,144,116,154)(107,143,117,153)(108,142,118,152)(109,141,119,151)(110,160,120,150), (1,63,128,115)(2,72,129,104)(3,61,130,113)(4,70,131,102)(5,79,132,111)(6,68,133,120)(7,77,134,109)(8,66,135,118)(9,75,136,107)(10,64,137,116)(11,73,138,105)(12,62,139,114)(13,71,140,103)(14,80,121,112)(15,69,122,101)(16,78,123,110)(17,67,124,119)(18,76,125,108)(19,65,126,117)(20,74,127,106)(21,42,151,92)(22,51,152,81)(23,60,153,90)(24,49,154,99)(25,58,155,88)(26,47,156,97)(27,56,157,86)(28,45,158,95)(29,54,159,84)(30,43,160,93)(31,52,141,82)(32,41,142,91)(33,50,143,100)(34,59,144,89)(35,48,145,98)(36,57,146,87)(37,46,147,96)(38,55,148,85)(39,44,149,94)(40,53,150,83), (1,145)(2,154)(3,143)(4,152)(5,141)(6,150)(7,159)(8,148)(9,157)(10,146)(11,155)(12,144)(13,153)(14,142)(15,151)(16,160)(17,149)(18,158)(19,147)(20,156)(21,122)(22,131)(23,140)(24,129)(25,138)(26,127)(27,136)(28,125)(29,134)(30,123)(31,132)(32,121)(33,130)(34,139)(35,128)(36,137)(37,126)(38,135)(39,124)(40,133)(41,80)(42,69)(43,78)(44,67)(45,76)(46,65)(47,74)(48,63)(49,72)(50,61)(51,70)(52,79)(53,68)(54,77)(55,66)(56,75)(57,64)(58,73)(59,62)(60,71)(81,102)(82,111)(83,120)(84,109)(85,118)(86,107)(87,116)(88,105)(89,114)(90,103)(91,112)(92,101)(93,110)(94,119)(95,108)(96,117)(97,106)(98,115)(99,104)(100,113) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,98,11,88),(2,97,12,87),(3,96,13,86),(4,95,14,85),(5,94,15,84),(6,93,16,83),(7,92,17,82),(8,91,18,81),(9,90,19,100),(10,89,20,99),(21,77,31,67),(22,76,32,66),(23,75,33,65),(24,74,34,64),(25,73,35,63),(26,72,36,62),(27,71,37,61),(28,70,38,80),(29,69,39,79),(30,68,40,78),(41,125,51,135),(42,124,52,134),(43,123,53,133),(44,122,54,132),(45,121,55,131),(46,140,56,130),(47,139,57,129),(48,138,58,128),(49,137,59,127),(50,136,60,126),(101,149,111,159),(102,148,112,158),(103,147,113,157),(104,146,114,156),(105,145,115,155),(106,144,116,154),(107,143,117,153),(108,142,118,152),(109,141,119,151),(110,160,120,150)], [(1,63,128,115),(2,72,129,104),(3,61,130,113),(4,70,131,102),(5,79,132,111),(6,68,133,120),(7,77,134,109),(8,66,135,118),(9,75,136,107),(10,64,137,116),(11,73,138,105),(12,62,139,114),(13,71,140,103),(14,80,121,112),(15,69,122,101),(16,78,123,110),(17,67,124,119),(18,76,125,108),(19,65,126,117),(20,74,127,106),(21,42,151,92),(22,51,152,81),(23,60,153,90),(24,49,154,99),(25,58,155,88),(26,47,156,97),(27,56,157,86),(28,45,158,95),(29,54,159,84),(30,43,160,93),(31,52,141,82),(32,41,142,91),(33,50,143,100),(34,59,144,89),(35,48,145,98),(36,57,146,87),(37,46,147,96),(38,55,148,85),(39,44,149,94),(40,53,150,83)], [(1,145),(2,154),(3,143),(4,152),(5,141),(6,150),(7,159),(8,148),(9,157),(10,146),(11,155),(12,144),(13,153),(14,142),(15,151),(16,160),(17,149),(18,158),(19,147),(20,156),(21,122),(22,131),(23,140),(24,129),(25,138),(26,127),(27,136),(28,125),(29,134),(30,123),(31,132),(32,121),(33,130),(34,139),(35,128),(36,137),(37,126),(38,135),(39,124),(40,133),(41,80),(42,69),(43,78),(44,67),(45,76),(46,65),(47,74),(48,63),(49,72),(50,61),(51,70),(52,79),(53,68),(54,77),(55,66),(56,75),(57,64),(58,73),(59,62),(60,71),(81,102),(82,111),(83,120),(84,109),(85,118),(86,107),(87,116),(88,105),(89,114),(90,103),(91,112),(92,101),(93,110),(94,119),(95,108),(96,117),(97,106),(98,115),(99,104),(100,113)])

Matrix representation G ⊆ GL6(𝔽41)

090000
900000
006100
0040000
0000400
0000040
,
0400000
100000
0035600
001600
0000400
0000040
,
010000
100000
0063500
00403500
0000123
00003240
,
100000
010000
0035600
001600
00004018
000001

G:=sub<GL(6,GF(41))| [0,9,0,0,0,0,9,0,0,0,0,0,0,0,6,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,0,0,0,0,1,32,0,0,0,0,23,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,40,0,0,0,0,0,18,1] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I···4N4O4P5A5B10A···10F10G10H10I10J20A···20H20I···20P
order122222222444444444···4445510···101010101020···2020···20
size11114101020202222444410···102020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- (1+4)D4×D5Q8.10D10D5×C4○D4
kernelDic1022D4D10⋊D4Dic5.5D4Dic53Q8D208C4C42D20D10⋊Q8C4×C5⋊D4C20.23D4C5×C22⋊Q8C2×C4○D20C2×Q8×D5Dic10C22⋊Q8D10C22⋊C4C4⋊C4C22×C4C2×Q8C10C4C2C2
# reps12212121111142446221444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{22}D_4
% in TeX

G:=Group("Dic10:22D4");
// GroupNames label

G:=SmallGroup(320,1305);
// by ID

G=gap.SmallGroup(320,1305);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,1571,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=d*a*d=a^9,c*b*c^-1=a^10*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽