Copied to
clipboard

?

G = D2022D4order 320 = 26·5

10th semidirect product of D20 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2022D4, C10.182- (1+4), C22⋊Q88D5, C55(D46D4), C4.112(D4×D5), C4⋊C4.189D10, D10.44(C2×D4), C20.235(C2×D4), D208C426C2, D10⋊D425C2, D102Q825C2, Dic55(C4○D4), (C2×Q8).126D10, C22⋊C4.16D10, C10.77(C22×D4), Dic5⋊Q814C2, (C2×C10).175C24, (C2×C20).503C23, (C22×C4).237D10, D10.13D418C2, D10.12D425C2, (C2×D20).155C22, C4⋊Dic5.215C22, (Q8×C10).107C22, C22.196(C23×D5), C23.119(C22×D5), D10⋊C4.23C22, (C22×C10).203C23, (C22×C20).255C22, (C2×Dic5).244C23, (C4×Dic5).113C22, C10.D4.27C22, (C22×D5).207C23, C23.D5.116C22, C2.19(Q8.10D10), (C2×Dic10).302C22, C2.50(C2×D4×D5), (D5×C4⋊C4)⋊26C2, (C4×C5⋊D4)⋊23C2, C2.49(D5×C4○D4), (C2×C4○D20)⋊24C2, (C2×Q82D5)⋊8C2, (C5×C22⋊Q8)⋊11C2, C10.161(C2×C4○D4), (C2×C4×D5).104C22, (C2×C4).48(C22×D5), (C5×C4⋊C4).158C22, (C2×C5⋊D4).131C22, (C5×C22⋊C4).30C22, SmallGroup(320,1303)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2022D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2022D4
C5C2×C10 — D2022D4

Subgroups: 1078 in 292 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×11], C22, C22 [×14], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×21], D4 [×14], Q8 [×4], C23, C23 [×3], D5 [×5], C10 [×3], C10, C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×7], C22×C4, C22×C4 [×7], C2×D4 [×6], C2×Q8, C2×Q8, C4○D4 [×8], Dic5 [×2], Dic5 [×4], C20 [×2], C20 [×5], D10 [×4], D10 [×7], C2×C10, C2×C10 [×3], C2×C4⋊C4 [×2], C4×D4 [×2], C4⋊D4 [×2], C22⋊Q8, C22⋊Q8, C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], Dic10 [×2], C4×D5 [×14], D20 [×4], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5, C22×D5 [×2], C22×C10, D46D4, C4×Dic5, C10.D4, C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×4], C23.D5, C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10, C2×C4×D5, C2×C4×D5 [×6], C2×D20, C2×D20 [×2], C4○D20 [×4], Q82D5 [×4], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, Q8×C10, D10.12D4 [×2], D10⋊D4 [×2], D5×C4⋊C4 [×2], D208C4, D10.13D4 [×2], D102Q8, C4×C5⋊D4, Dic5⋊Q8, C5×C22⋊Q8, C2×C4○D20, C2×Q82D5, D2022D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], D46D4, D4×D5 [×2], C23×D5, C2×D4×D5, Q8.10D10, D5×C4○D4, D2022D4

Generators and relations
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, cac-1=dad=a9, cbc-1=a8b, dbd=a18b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 80)(11 79)(12 78)(13 77)(14 76)(15 75)(16 74)(17 73)(18 72)(19 71)(20 70)(21 119)(22 118)(23 117)(24 116)(25 115)(26 114)(27 113)(28 112)(29 111)(30 110)(31 109)(32 108)(33 107)(34 106)(35 105)(36 104)(37 103)(38 102)(39 101)(40 120)(41 135)(42 134)(43 133)(44 132)(45 131)(46 130)(47 129)(48 128)(49 127)(50 126)(51 125)(52 124)(53 123)(54 122)(55 121)(56 140)(57 139)(58 138)(59 137)(60 136)(81 145)(82 144)(83 143)(84 142)(85 141)(86 160)(87 159)(88 158)(89 157)(90 156)(91 155)(92 154)(93 153)(94 152)(95 151)(96 150)(97 149)(98 148)(99 147)(100 146)
(1 144 117 138)(2 153 118 127)(3 142 119 136)(4 151 120 125)(5 160 101 134)(6 149 102 123)(7 158 103 132)(8 147 104 121)(9 156 105 130)(10 145 106 139)(11 154 107 128)(12 143 108 137)(13 152 109 126)(14 141 110 135)(15 150 111 124)(16 159 112 133)(17 148 113 122)(18 157 114 131)(19 146 115 140)(20 155 116 129)(21 52 67 96)(22 41 68 85)(23 50 69 94)(24 59 70 83)(25 48 71 92)(26 57 72 81)(27 46 73 90)(28 55 74 99)(29 44 75 88)(30 53 76 97)(31 42 77 86)(32 51 78 95)(33 60 79 84)(34 49 80 93)(35 58 61 82)(36 47 62 91)(37 56 63 100)(38 45 64 89)(39 54 65 98)(40 43 66 87)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 27)(22 36)(23 25)(24 34)(26 32)(28 30)(29 39)(31 37)(33 35)(38 40)(41 91)(42 100)(43 89)(44 98)(45 87)(46 96)(47 85)(48 94)(49 83)(50 92)(51 81)(52 90)(53 99)(54 88)(55 97)(56 86)(57 95)(58 84)(59 93)(60 82)(61 79)(62 68)(63 77)(64 66)(65 75)(67 73)(69 71)(70 80)(72 78)(74 76)(101 113)(103 111)(104 120)(105 109)(106 118)(108 116)(110 114)(115 119)(121 151)(122 160)(123 149)(124 158)(125 147)(126 156)(127 145)(128 154)(129 143)(130 152)(131 141)(132 150)(133 159)(134 148)(135 157)(136 146)(137 155)(138 144)(139 153)(140 142)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,70)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,120)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,140)(57,139)(58,138)(59,137)(60,136)(81,145)(82,144)(83,143)(84,142)(85,141)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146), (1,144,117,138)(2,153,118,127)(3,142,119,136)(4,151,120,125)(5,160,101,134)(6,149,102,123)(7,158,103,132)(8,147,104,121)(9,156,105,130)(10,145,106,139)(11,154,107,128)(12,143,108,137)(13,152,109,126)(14,141,110,135)(15,150,111,124)(16,159,112,133)(17,148,113,122)(18,157,114,131)(19,146,115,140)(20,155,116,129)(21,52,67,96)(22,41,68,85)(23,50,69,94)(24,59,70,83)(25,48,71,92)(26,57,72,81)(27,46,73,90)(28,55,74,99)(29,44,75,88)(30,53,76,97)(31,42,77,86)(32,51,78,95)(33,60,79,84)(34,49,80,93)(35,58,61,82)(36,47,62,91)(37,56,63,100)(38,45,64,89)(39,54,65,98)(40,43,66,87), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,27)(22,36)(23,25)(24,34)(26,32)(28,30)(29,39)(31,37)(33,35)(38,40)(41,91)(42,100)(43,89)(44,98)(45,87)(46,96)(47,85)(48,94)(49,83)(50,92)(51,81)(52,90)(53,99)(54,88)(55,97)(56,86)(57,95)(58,84)(59,93)(60,82)(61,79)(62,68)(63,77)(64,66)(65,75)(67,73)(69,71)(70,80)(72,78)(74,76)(101,113)(103,111)(104,120)(105,109)(106,118)(108,116)(110,114)(115,119)(121,151)(122,160)(123,149)(124,158)(125,147)(126,156)(127,145)(128,154)(129,143)(130,152)(131,141)(132,150)(133,159)(134,148)(135,157)(136,146)(137,155)(138,144)(139,153)(140,142)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,70)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,120)(41,135)(42,134)(43,133)(44,132)(45,131)(46,130)(47,129)(48,128)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,140)(57,139)(58,138)(59,137)(60,136)(81,145)(82,144)(83,143)(84,142)(85,141)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146), (1,144,117,138)(2,153,118,127)(3,142,119,136)(4,151,120,125)(5,160,101,134)(6,149,102,123)(7,158,103,132)(8,147,104,121)(9,156,105,130)(10,145,106,139)(11,154,107,128)(12,143,108,137)(13,152,109,126)(14,141,110,135)(15,150,111,124)(16,159,112,133)(17,148,113,122)(18,157,114,131)(19,146,115,140)(20,155,116,129)(21,52,67,96)(22,41,68,85)(23,50,69,94)(24,59,70,83)(25,48,71,92)(26,57,72,81)(27,46,73,90)(28,55,74,99)(29,44,75,88)(30,53,76,97)(31,42,77,86)(32,51,78,95)(33,60,79,84)(34,49,80,93)(35,58,61,82)(36,47,62,91)(37,56,63,100)(38,45,64,89)(39,54,65,98)(40,43,66,87), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,27)(22,36)(23,25)(24,34)(26,32)(28,30)(29,39)(31,37)(33,35)(38,40)(41,91)(42,100)(43,89)(44,98)(45,87)(46,96)(47,85)(48,94)(49,83)(50,92)(51,81)(52,90)(53,99)(54,88)(55,97)(56,86)(57,95)(58,84)(59,93)(60,82)(61,79)(62,68)(63,77)(64,66)(65,75)(67,73)(69,71)(70,80)(72,78)(74,76)(101,113)(103,111)(104,120)(105,109)(106,118)(108,116)(110,114)(115,119)(121,151)(122,160)(123,149)(124,158)(125,147)(126,156)(127,145)(128,154)(129,143)(130,152)(131,141)(132,150)(133,159)(134,148)(135,157)(136,146)(137,155)(138,144)(139,153)(140,142) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,80),(11,79),(12,78),(13,77),(14,76),(15,75),(16,74),(17,73),(18,72),(19,71),(20,70),(21,119),(22,118),(23,117),(24,116),(25,115),(26,114),(27,113),(28,112),(29,111),(30,110),(31,109),(32,108),(33,107),(34,106),(35,105),(36,104),(37,103),(38,102),(39,101),(40,120),(41,135),(42,134),(43,133),(44,132),(45,131),(46,130),(47,129),(48,128),(49,127),(50,126),(51,125),(52,124),(53,123),(54,122),(55,121),(56,140),(57,139),(58,138),(59,137),(60,136),(81,145),(82,144),(83,143),(84,142),(85,141),(86,160),(87,159),(88,158),(89,157),(90,156),(91,155),(92,154),(93,153),(94,152),(95,151),(96,150),(97,149),(98,148),(99,147),(100,146)], [(1,144,117,138),(2,153,118,127),(3,142,119,136),(4,151,120,125),(5,160,101,134),(6,149,102,123),(7,158,103,132),(8,147,104,121),(9,156,105,130),(10,145,106,139),(11,154,107,128),(12,143,108,137),(13,152,109,126),(14,141,110,135),(15,150,111,124),(16,159,112,133),(17,148,113,122),(18,157,114,131),(19,146,115,140),(20,155,116,129),(21,52,67,96),(22,41,68,85),(23,50,69,94),(24,59,70,83),(25,48,71,92),(26,57,72,81),(27,46,73,90),(28,55,74,99),(29,44,75,88),(30,53,76,97),(31,42,77,86),(32,51,78,95),(33,60,79,84),(34,49,80,93),(35,58,61,82),(36,47,62,91),(37,56,63,100),(38,45,64,89),(39,54,65,98),(40,43,66,87)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,27),(22,36),(23,25),(24,34),(26,32),(28,30),(29,39),(31,37),(33,35),(38,40),(41,91),(42,100),(43,89),(44,98),(45,87),(46,96),(47,85),(48,94),(49,83),(50,92),(51,81),(52,90),(53,99),(54,88),(55,97),(56,86),(57,95),(58,84),(59,93),(60,82),(61,79),(62,68),(63,77),(64,66),(65,75),(67,73),(69,71),(70,80),(72,78),(74,76),(101,113),(103,111),(104,120),(105,109),(106,118),(108,116),(110,114),(115,119),(121,151),(122,160),(123,149),(124,158),(125,147),(126,156),(127,145),(128,154),(129,143),(130,152),(131,141),(132,150),(133,159),(134,148),(135,157),(136,146),(137,155),(138,144),(139,153),(140,142)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
00323700
000900
000001
0000406
,
100000
010000
0031600
0041000
000001
000010
,
12370000
26290000
0040000
0004000
000010
0000640
,
4000000
3510000
001500
0004000
000010
0000640

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,37,9,0,0,0,0,0,0,0,40,0,0,0,0,1,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,4,0,0,0,0,6,10,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,26,0,0,0,0,37,29,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,5,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222224444444444444445510···101010101020···2020···20
size1111410101010202222444410101010202020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- (1+4)D4×D5Q8.10D10D5×C4○D4
kernelD2022D4D10.12D4D10⋊D4D5×C4⋊C4D208C4D10.13D4D102Q8C4×C5⋊D4Dic5⋊Q8C5×C22⋊Q8C2×C4○D20C2×Q82D5D20C22⋊Q8Dic5C22⋊C4C4⋊C4C22×C4C2×Q8C10C4C2C2
# reps12221211111142446221444

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{22}D_4
% in TeX

G:=Group("D20:22D4");
// GroupNames label

G:=SmallGroup(320,1303);
// by ID

G=gap.SmallGroup(320,1303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^9,c*b*c^-1=a^8*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽