Extensions 1→N→G→Q→1 with N=C2×C12 and Q=C3×S3

Direct product G=N×Q with N=C2×C12 and Q=C3×S3
dρLabelID
S3×C6×C12144S3xC6xC12432,701

Semidirect products G=N:Q with N=C2×C12 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C2×C12)⋊1(C3×S3) = C32×D6⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12):1(C3xS3)432,474
(C2×C12)⋊2(C3×S3) = C3×C6.11D12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12):2(C3xS3)432,490
(C2×C12)⋊3(C3×S3) = C6×C12⋊S3φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12):3(C3xS3)432,712
(C2×C12)⋊4(C3×S3) = C3×C12.59D6φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12):4(C3xS3)432,713
(C2×C12)⋊5(C3×S3) = C3⋊S3×C2×C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12):5(C3xS3)432,711
(C2×C12)⋊6(C3×S3) = C3×C6×D12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12):6(C3xS3)432,702
(C2×C12)⋊7(C3×S3) = C32×C4○D12φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12):7(C3xS3)432,703

Non-split extensions G=N.Q with N=C2×C12 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C2×C12).1(C3×S3) = C3×Dic9⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).1(C3xS3)432,129
(C2×C12).2(C3×S3) = C9×Dic3⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).2(C3xS3)432,132
(C2×C12).3(C3×S3) = C3×D18⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).3(C3xS3)432,134
(C2×C12).4(C3×S3) = C9×D6⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).4(C3xS3)432,135
(C2×C12).5(C3×S3) = C62.19D6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).5(C3xS3)432,139
(C2×C12).6(C3×S3) = C62.21D6φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).6(C3xS3)432,141
(C2×C12).7(C3×S3) = Dic9⋊C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).7(C3xS3)432,145
(C2×C12).8(C3×S3) = D18⋊C12φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).8(C3xS3)432,147
(C2×C12).9(C3×S3) = C32×Dic3⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).9(C3xS3)432,472
(C2×C12).10(C3×S3) = C3×C6.Dic6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).10(C3xS3)432,488
(C2×C12).11(C3×S3) = C3×C4⋊Dic9φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).11(C3xS3)432,130
(C2×C12).12(C3×S3) = C62.20D6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).12(C3xS3)432,140
(C2×C12).13(C3×S3) = C36⋊C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).13(C3xS3)432,146
(C2×C12).14(C3×S3) = C6×Dic18φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).14(C3xS3)432,340
(C2×C12).15(C3×S3) = C6×D36φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).15(C3xS3)432,343
(C2×C12).16(C3×S3) = C2×He33Q8φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).16(C3xS3)432,348
(C2×C12).17(C3×S3) = C2×He34D4φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).17(C3xS3)432,350
(C2×C12).18(C3×S3) = C2×C36.C6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).18(C3xS3)432,352
(C2×C12).19(C3×S3) = C2×D36⋊C3φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).19(C3xS3)432,354
(C2×C12).20(C3×S3) = C3×C12⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).20(C3xS3)432,489
(C2×C12).21(C3×S3) = C6×C324Q8φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).21(C3xS3)432,710
(C2×C12).22(C3×S3) = C3×C4.Dic9φ: C3×S3/C32C2 ⊆ Aut C2×C12722(C2xC12).22(C3xS3)432,125
(C2×C12).23(C3×S3) = He37M4(2)φ: C3×S3/C32C2 ⊆ Aut C2×C12726(C2xC12).23(C3xS3)432,137
(C2×C12).24(C3×S3) = C36.C12φ: C3×S3/C32C2 ⊆ Aut C2×C12726(C2xC12).24(C3xS3)432,143
(C2×C12).25(C3×S3) = C3×D365C2φ: C3×S3/C32C2 ⊆ Aut C2×C12722(C2xC12).25(C3xS3)432,344
(C2×C12).26(C3×S3) = C62.36D6φ: C3×S3/C32C2 ⊆ Aut C2×C12726(C2xC12).26(C3xS3)432,351
(C2×C12).27(C3×S3) = D366C6φ: C3×S3/C32C2 ⊆ Aut C2×C12726(C2xC12).27(C3xS3)432,355
(C2×C12).28(C3×S3) = C3×C12.58D6φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).28(C3xS3)432,486
(C2×C12).29(C3×S3) = C6×C9⋊C8φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).29(C3xS3)432,124
(C2×C12).30(C3×S3) = C12×Dic9φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).30(C3xS3)432,128
(C2×C12).31(C3×S3) = C2×He33C8φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).31(C3xS3)432,136
(C2×C12).32(C3×S3) = C4×C32⋊C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).32(C3xS3)432,138
(C2×C12).33(C3×S3) = C2×C9⋊C24φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).33(C3xS3)432,142
(C2×C12).34(C3×S3) = C4×C9⋊C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).34(C3xS3)432,144
(C2×C12).35(C3×S3) = D9×C2×C12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).35(C3xS3)432,342
(C2×C12).36(C3×S3) = C2×C4×C32⋊C6φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).36(C3xS3)432,349
(C2×C12).37(C3×S3) = C2×C4×C9⋊C6φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).37(C3xS3)432,353
(C2×C12).38(C3×S3) = C6×C324C8φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).38(C3xS3)432,485
(C2×C12).39(C3×S3) = C12×C3⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).39(C3xS3)432,487
(C2×C12).40(C3×S3) = C9×C4.Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C12722(C2xC12).40(C3xS3)432,127
(C2×C12).41(C3×S3) = C9×C4⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).41(C3xS3)432,133
(C2×C12).42(C3×S3) = C18×Dic6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).42(C3xS3)432,341
(C2×C12).43(C3×S3) = C18×D12φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).43(C3xS3)432,346
(C2×C12).44(C3×S3) = C9×C4○D12φ: C3×S3/C32C2 ⊆ Aut C2×C12722(C2xC12).44(C3xS3)432,347
(C2×C12).45(C3×S3) = C32×C4.Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C1272(C2xC12).45(C3xS3)432,470
(C2×C12).46(C3×S3) = C32×C4⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).46(C3xS3)432,473
(C2×C12).47(C3×S3) = C3×C6×Dic6φ: C3×S3/C32C2 ⊆ Aut C2×C12144(C2xC12).47(C3xS3)432,700
(C2×C12).48(C3×S3) = C18×C3⋊C8central extension (φ=1)144(C2xC12).48(C3xS3)432,126
(C2×C12).49(C3×S3) = Dic3×C36central extension (φ=1)144(C2xC12).49(C3xS3)432,131
(C2×C12).50(C3×S3) = S3×C2×C36central extension (φ=1)144(C2xC12).50(C3xS3)432,345
(C2×C12).51(C3×S3) = C3×C6×C3⋊C8central extension (φ=1)144(C2xC12).51(C3xS3)432,469
(C2×C12).52(C3×S3) = Dic3×C3×C12central extension (φ=1)144(C2xC12).52(C3xS3)432,471

׿
×
𝔽