Copied to
clipboard

G = C32×Q8⋊2S3order 432 = 24·33

Direct product of C32 and Q8⋊2S3

Series: Derived Chief Lower central Upper central

 Derived series C1 — C12 — C32×Q8⋊2S3
 Chief series C1 — C3 — C6 — C12 — C3×C12 — C32×C12 — C32×D12 — C32×Q8⋊2S3
 Lower central C3 — C6 — C12 — C32×Q8⋊2S3
 Upper central C1 — C3×C6 — C3×C12 — Q8×C32

Generators and relations for C32×Q82S3
G = < a,b,c,d,e,f | a3=b3=c4=e3=f2=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fcf=c-1, ce=ec, de=ed, fdf=c-1d, fef=e-1 >

Subgroups: 384 in 168 conjugacy classes, 66 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, C12, C12, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×Q8, C3×Q8, C3×Q8, C33, C3×C12, C3×C12, C3×C12, S3×C6, C62, Q82S3, C3×SD16, S3×C32, C32×C6, C3×C3⋊C8, C3×C24, C3×D12, D4×C32, Q8×C32, Q8×C32, Q8×C32, C32×C12, C32×C12, S3×C3×C6, C3×Q82S3, C32×SD16, C32×C3⋊C8, C32×D12, Q8×C33, C32×Q82S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C32, D6, C2×C6, SD16, C3×S3, C3×C6, C3⋊D4, C3×D4, S3×C6, C62, Q82S3, C3×SD16, S3×C32, C3×C3⋊D4, D4×C32, S3×C3×C6, C3×Q82S3, C32×SD16, C32×C3⋊D4, C32×Q82S3

Smallest permutation representation of C32×Q82S3
On 144 points
Generators in S144
(1 38 28)(2 39 25)(3 40 26)(4 37 27)(5 131 126)(6 132 127)(7 129 128)(8 130 125)(9 136 118)(10 133 119)(11 134 120)(12 135 117)(13 35 30)(14 36 31)(15 33 32)(16 34 29)(17 43 22)(18 44 23)(19 41 24)(20 42 21)(45 75 68)(46 76 65)(47 73 66)(48 74 67)(49 78 59)(50 79 60)(51 80 57)(52 77 58)(53 70 64)(54 71 61)(55 72 62)(56 69 63)(81 114 104)(82 115 101)(83 116 102)(84 113 103)(85 111 95)(86 112 96)(87 109 93)(88 110 94)(89 106 100)(90 107 97)(91 108 98)(92 105 99)(121 143 138)(122 144 139)(123 141 140)(124 142 137)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 143)(6 11 144)(7 12 141)(8 9 142)(21 27 32)(22 28 29)(23 25 30)(24 26 31)(33 42 37)(34 43 38)(35 44 39)(36 41 40)(45 56 51)(46 53 52)(47 54 49)(48 55 50)(57 68 63)(58 65 64)(59 66 61)(60 67 62)(69 80 75)(70 77 76)(71 78 73)(72 79 74)(81 92 87)(82 89 88)(83 90 85)(84 91 86)(93 104 99)(94 101 100)(95 102 97)(96 103 98)(105 109 114)(106 110 115)(107 111 116)(108 112 113)(117 123 128)(118 124 125)(119 121 126)(120 122 127)(129 135 140)(130 136 137)(131 133 138)(132 134 139)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 48 3 46)(2 47 4 45)(5 112 7 110)(6 111 8 109)(9 114 11 116)(10 113 12 115)(13 54 15 56)(14 53 16 55)(17 50 19 52)(18 49 20 51)(21 57 23 59)(22 60 24 58)(25 66 27 68)(26 65 28 67)(29 62 31 64)(30 61 32 63)(33 69 35 71)(34 72 36 70)(37 75 39 73)(38 74 40 76)(41 77 43 79)(42 80 44 78)(81 120 83 118)(82 119 84 117)(85 125 87 127)(86 128 88 126)(89 121 91 123)(90 124 92 122)(93 132 95 130)(94 131 96 129)(97 137 99 139)(98 140 100 138)(101 133 103 135)(102 136 104 134)(105 144 107 142)(106 143 108 141)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 10 143)(6 11 144)(7 12 141)(8 9 142)(21 32 27)(22 29 28)(23 30 25)(24 31 26)(33 37 42)(34 38 43)(35 39 44)(36 40 41)(45 51 56)(46 52 53)(47 49 54)(48 50 55)(57 63 68)(58 64 65)(59 61 66)(60 62 67)(69 75 80)(70 76 77)(71 73 78)(72 74 79)(81 92 87)(82 89 88)(83 90 85)(84 91 86)(93 104 99)(94 101 100)(95 102 97)(96 103 98)(105 109 114)(106 110 115)(107 111 116)(108 112 113)(117 123 128)(118 124 125)(119 121 126)(120 122 127)(129 135 140)(130 136 137)(131 133 138)(132 134 139)
(1 82)(2 81)(3 84)(4 83)(5 80)(6 79)(7 78)(8 77)(9 76)(10 75)(11 74)(12 73)(13 92)(14 91)(15 90)(16 89)(17 88)(18 87)(19 86)(20 85)(21 95)(22 94)(23 93)(24 96)(25 104)(26 103)(27 102)(28 101)(29 100)(30 99)(31 98)(32 97)(33 107)(34 106)(35 105)(36 108)(37 116)(38 115)(39 114)(40 113)(41 112)(42 111)(43 110)(44 109)(45 119)(46 118)(47 117)(48 120)(49 128)(50 127)(51 126)(52 125)(53 124)(54 123)(55 122)(56 121)(57 131)(58 130)(59 129)(60 132)(61 140)(62 139)(63 138)(64 137)(65 136)(66 135)(67 134)(68 133)(69 143)(70 142)(71 141)(72 144)

G:=sub<Sym(144)| (1,38,28)(2,39,25)(3,40,26)(4,37,27)(5,131,126)(6,132,127)(7,129,128)(8,130,125)(9,136,118)(10,133,119)(11,134,120)(12,135,117)(13,35,30)(14,36,31)(15,33,32)(16,34,29)(17,43,22)(18,44,23)(19,41,24)(20,42,21)(45,75,68)(46,76,65)(47,73,66)(48,74,67)(49,78,59)(50,79,60)(51,80,57)(52,77,58)(53,70,64)(54,71,61)(55,72,62)(56,69,63)(81,114,104)(82,115,101)(83,116,102)(84,113,103)(85,111,95)(86,112,96)(87,109,93)(88,110,94)(89,106,100)(90,107,97)(91,108,98)(92,105,99)(121,143,138)(122,144,139)(123,141,140)(124,142,137), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,143)(6,11,144)(7,12,141)(8,9,142)(21,27,32)(22,28,29)(23,25,30)(24,26,31)(33,42,37)(34,43,38)(35,44,39)(36,41,40)(45,56,51)(46,53,52)(47,54,49)(48,55,50)(57,68,63)(58,65,64)(59,66,61)(60,67,62)(69,80,75)(70,77,76)(71,78,73)(72,79,74)(81,92,87)(82,89,88)(83,90,85)(84,91,86)(93,104,99)(94,101,100)(95,102,97)(96,103,98)(105,109,114)(106,110,115)(107,111,116)(108,112,113)(117,123,128)(118,124,125)(119,121,126)(120,122,127)(129,135,140)(130,136,137)(131,133,138)(132,134,139), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,48,3,46)(2,47,4,45)(5,112,7,110)(6,111,8,109)(9,114,11,116)(10,113,12,115)(13,54,15,56)(14,53,16,55)(17,50,19,52)(18,49,20,51)(21,57,23,59)(22,60,24,58)(25,66,27,68)(26,65,28,67)(29,62,31,64)(30,61,32,63)(33,69,35,71)(34,72,36,70)(37,75,39,73)(38,74,40,76)(41,77,43,79)(42,80,44,78)(81,120,83,118)(82,119,84,117)(85,125,87,127)(86,128,88,126)(89,121,91,123)(90,124,92,122)(93,132,95,130)(94,131,96,129)(97,137,99,139)(98,140,100,138)(101,133,103,135)(102,136,104,134)(105,144,107,142)(106,143,108,141), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,143)(6,11,144)(7,12,141)(8,9,142)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,37,42)(34,38,43)(35,39,44)(36,40,41)(45,51,56)(46,52,53)(47,49,54)(48,50,55)(57,63,68)(58,64,65)(59,61,66)(60,62,67)(69,75,80)(70,76,77)(71,73,78)(72,74,79)(81,92,87)(82,89,88)(83,90,85)(84,91,86)(93,104,99)(94,101,100)(95,102,97)(96,103,98)(105,109,114)(106,110,115)(107,111,116)(108,112,113)(117,123,128)(118,124,125)(119,121,126)(120,122,127)(129,135,140)(130,136,137)(131,133,138)(132,134,139), (1,82)(2,81)(3,84)(4,83)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,95)(22,94)(23,93)(24,96)(25,104)(26,103)(27,102)(28,101)(29,100)(30,99)(31,98)(32,97)(33,107)(34,106)(35,105)(36,108)(37,116)(38,115)(39,114)(40,113)(41,112)(42,111)(43,110)(44,109)(45,119)(46,118)(47,117)(48,120)(49,128)(50,127)(51,126)(52,125)(53,124)(54,123)(55,122)(56,121)(57,131)(58,130)(59,129)(60,132)(61,140)(62,139)(63,138)(64,137)(65,136)(66,135)(67,134)(68,133)(69,143)(70,142)(71,141)(72,144)>;

G:=Group( (1,38,28)(2,39,25)(3,40,26)(4,37,27)(5,131,126)(6,132,127)(7,129,128)(8,130,125)(9,136,118)(10,133,119)(11,134,120)(12,135,117)(13,35,30)(14,36,31)(15,33,32)(16,34,29)(17,43,22)(18,44,23)(19,41,24)(20,42,21)(45,75,68)(46,76,65)(47,73,66)(48,74,67)(49,78,59)(50,79,60)(51,80,57)(52,77,58)(53,70,64)(54,71,61)(55,72,62)(56,69,63)(81,114,104)(82,115,101)(83,116,102)(84,113,103)(85,111,95)(86,112,96)(87,109,93)(88,110,94)(89,106,100)(90,107,97)(91,108,98)(92,105,99)(121,143,138)(122,144,139)(123,141,140)(124,142,137), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,143)(6,11,144)(7,12,141)(8,9,142)(21,27,32)(22,28,29)(23,25,30)(24,26,31)(33,42,37)(34,43,38)(35,44,39)(36,41,40)(45,56,51)(46,53,52)(47,54,49)(48,55,50)(57,68,63)(58,65,64)(59,66,61)(60,67,62)(69,80,75)(70,77,76)(71,78,73)(72,79,74)(81,92,87)(82,89,88)(83,90,85)(84,91,86)(93,104,99)(94,101,100)(95,102,97)(96,103,98)(105,109,114)(106,110,115)(107,111,116)(108,112,113)(117,123,128)(118,124,125)(119,121,126)(120,122,127)(129,135,140)(130,136,137)(131,133,138)(132,134,139), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,48,3,46)(2,47,4,45)(5,112,7,110)(6,111,8,109)(9,114,11,116)(10,113,12,115)(13,54,15,56)(14,53,16,55)(17,50,19,52)(18,49,20,51)(21,57,23,59)(22,60,24,58)(25,66,27,68)(26,65,28,67)(29,62,31,64)(30,61,32,63)(33,69,35,71)(34,72,36,70)(37,75,39,73)(38,74,40,76)(41,77,43,79)(42,80,44,78)(81,120,83,118)(82,119,84,117)(85,125,87,127)(86,128,88,126)(89,121,91,123)(90,124,92,122)(93,132,95,130)(94,131,96,129)(97,137,99,139)(98,140,100,138)(101,133,103,135)(102,136,104,134)(105,144,107,142)(106,143,108,141), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,143)(6,11,144)(7,12,141)(8,9,142)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,37,42)(34,38,43)(35,39,44)(36,40,41)(45,51,56)(46,52,53)(47,49,54)(48,50,55)(57,63,68)(58,64,65)(59,61,66)(60,62,67)(69,75,80)(70,76,77)(71,73,78)(72,74,79)(81,92,87)(82,89,88)(83,90,85)(84,91,86)(93,104,99)(94,101,100)(95,102,97)(96,103,98)(105,109,114)(106,110,115)(107,111,116)(108,112,113)(117,123,128)(118,124,125)(119,121,126)(120,122,127)(129,135,140)(130,136,137)(131,133,138)(132,134,139), (1,82)(2,81)(3,84)(4,83)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,95)(22,94)(23,93)(24,96)(25,104)(26,103)(27,102)(28,101)(29,100)(30,99)(31,98)(32,97)(33,107)(34,106)(35,105)(36,108)(37,116)(38,115)(39,114)(40,113)(41,112)(42,111)(43,110)(44,109)(45,119)(46,118)(47,117)(48,120)(49,128)(50,127)(51,126)(52,125)(53,124)(54,123)(55,122)(56,121)(57,131)(58,130)(59,129)(60,132)(61,140)(62,139)(63,138)(64,137)(65,136)(66,135)(67,134)(68,133)(69,143)(70,142)(71,141)(72,144) );

G=PermutationGroup([[(1,38,28),(2,39,25),(3,40,26),(4,37,27),(5,131,126),(6,132,127),(7,129,128),(8,130,125),(9,136,118),(10,133,119),(11,134,120),(12,135,117),(13,35,30),(14,36,31),(15,33,32),(16,34,29),(17,43,22),(18,44,23),(19,41,24),(20,42,21),(45,75,68),(46,76,65),(47,73,66),(48,74,67),(49,78,59),(50,79,60),(51,80,57),(52,77,58),(53,70,64),(54,71,61),(55,72,62),(56,69,63),(81,114,104),(82,115,101),(83,116,102),(84,113,103),(85,111,95),(86,112,96),(87,109,93),(88,110,94),(89,106,100),(90,107,97),(91,108,98),(92,105,99),(121,143,138),(122,144,139),(123,141,140),(124,142,137)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,143),(6,11,144),(7,12,141),(8,9,142),(21,27,32),(22,28,29),(23,25,30),(24,26,31),(33,42,37),(34,43,38),(35,44,39),(36,41,40),(45,56,51),(46,53,52),(47,54,49),(48,55,50),(57,68,63),(58,65,64),(59,66,61),(60,67,62),(69,80,75),(70,77,76),(71,78,73),(72,79,74),(81,92,87),(82,89,88),(83,90,85),(84,91,86),(93,104,99),(94,101,100),(95,102,97),(96,103,98),(105,109,114),(106,110,115),(107,111,116),(108,112,113),(117,123,128),(118,124,125),(119,121,126),(120,122,127),(129,135,140),(130,136,137),(131,133,138),(132,134,139)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,48,3,46),(2,47,4,45),(5,112,7,110),(6,111,8,109),(9,114,11,116),(10,113,12,115),(13,54,15,56),(14,53,16,55),(17,50,19,52),(18,49,20,51),(21,57,23,59),(22,60,24,58),(25,66,27,68),(26,65,28,67),(29,62,31,64),(30,61,32,63),(33,69,35,71),(34,72,36,70),(37,75,39,73),(38,74,40,76),(41,77,43,79),(42,80,44,78),(81,120,83,118),(82,119,84,117),(85,125,87,127),(86,128,88,126),(89,121,91,123),(90,124,92,122),(93,132,95,130),(94,131,96,129),(97,137,99,139),(98,140,100,138),(101,133,103,135),(102,136,104,134),(105,144,107,142),(106,143,108,141)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,10,143),(6,11,144),(7,12,141),(8,9,142),(21,32,27),(22,29,28),(23,30,25),(24,31,26),(33,37,42),(34,38,43),(35,39,44),(36,40,41),(45,51,56),(46,52,53),(47,49,54),(48,50,55),(57,63,68),(58,64,65),(59,61,66),(60,62,67),(69,75,80),(70,76,77),(71,73,78),(72,74,79),(81,92,87),(82,89,88),(83,90,85),(84,91,86),(93,104,99),(94,101,100),(95,102,97),(96,103,98),(105,109,114),(106,110,115),(107,111,116),(108,112,113),(117,123,128),(118,124,125),(119,121,126),(120,122,127),(129,135,140),(130,136,137),(131,133,138),(132,134,139)], [(1,82),(2,81),(3,84),(4,83),(5,80),(6,79),(7,78),(8,77),(9,76),(10,75),(11,74),(12,73),(13,92),(14,91),(15,90),(16,89),(17,88),(18,87),(19,86),(20,85),(21,95),(22,94),(23,93),(24,96),(25,104),(26,103),(27,102),(28,101),(29,100),(30,99),(31,98),(32,97),(33,107),(34,106),(35,105),(36,108),(37,116),(38,115),(39,114),(40,113),(41,112),(42,111),(43,110),(44,109),(45,119),(46,118),(47,117),(48,120),(49,128),(50,127),(51,126),(52,125),(53,124),(54,123),(55,122),(56,121),(57,131),(58,130),(59,129),(60,132),(61,140),(62,139),(63,138),(64,137),(65,136),(66,135),(67,134),(68,133),(69,143),(70,142),(71,141),(72,144)]])

108 conjugacy classes

 class 1 2A 2B 3A ··· 3H 3I ··· 3Q 4A 4B 6A ··· 6H 6I ··· 6Q 6R ··· 6Y 8A 8B 12A ··· 12H 12I ··· 12AQ 24A ··· 24P order 1 2 2 3 ··· 3 3 ··· 3 4 4 6 ··· 6 6 ··· 6 6 ··· 6 8 8 12 ··· 12 12 ··· 12 24 ··· 24 size 1 1 12 1 ··· 1 2 ··· 2 2 4 1 ··· 1 2 ··· 2 12 ··· 12 6 6 2 ··· 2 4 ··· 4 6 ··· 6

108 irreducible representations

 dim 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4 4 type + + + + + + + + image C1 C2 C2 C2 C3 C6 C6 C6 S3 D4 D6 SD16 C3×S3 C3⋊D4 C3×D4 S3×C6 C3×SD16 C3×C3⋊D4 Q8⋊2S3 C3×Q8⋊2S3 kernel C32×Q8⋊2S3 C32×C3⋊C8 C32×D12 Q8×C33 C3×Q8⋊2S3 C3×C3⋊C8 C3×D12 Q8×C32 Q8×C32 C32×C6 C3×C12 C33 C3×Q8 C3×C6 C3×C6 C12 C32 C6 C32 C3 # reps 1 1 1 1 8 8 8 8 1 1 1 2 8 2 8 8 16 16 1 8

Matrix representation of C32×Q82S3 in GL6(𝔽73)

 64 0 0 0 0 0 0 64 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 64 0 0 0 0 0 0 64 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 72 0 0 0 0 0 0 72 0 0 0 0 0 0 72 0 0 0 0 0 0 72 0 0 0 0 0 0 0 1 0 0 0 0 72 0
,
 0 37 0 0 0 0 2 0 0 0 0 0 0 0 72 0 0 0 0 0 0 1 0 0 0 0 0 0 6 6 0 0 0 0 6 67
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 8 0 0 0 0 0 0 64 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 32 37 0 0 0 0 71 41 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 72

G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[0,2,0,0,0,0,37,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,6,6,0,0,0,0,6,67],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,71,0,0,0,0,37,41,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C32×Q82S3 in GAP, Magma, Sage, TeX

C_3^2\times Q_8\rtimes_2S_3
% in TeX

G:=Group("C3^2xQ8:2S3");
// GroupNames label

G:=SmallGroup(432,477);
// by ID

G=gap.SmallGroup(432,477);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,533,512,3784,1901,102,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=f^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*c*f=c^-1,c*e=e*c,d*e=e*d,f*d*f=c^-1*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽