Direct product G=NxQ with N=C36 and Q=D6
Semidirect products G=N:Q with N=C36 and Q=D6
Non-split extensions G=N.Q with N=C36 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C36.1D6 = D4.D27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4- | C36.1D6 | 432,15 |
C36.2D6 = D4:D27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4+ | C36.2D6 | 432,16 |
C36.3D6 = C27:Q16 | φ: D6/C3 → C22 ⊆ Aut C36 | 432 | 4- | C36.3D6 | 432,17 |
C36.4D6 = Q8:2D27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4+ | C36.4D6 | 432,18 |
C36.5D6 = D4xD27 | φ: D6/C3 → C22 ⊆ Aut C36 | 108 | 4+ | C36.5D6 | 432,47 |
C36.6D6 = D4:2D27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4- | C36.6D6 | 432,48 |
C36.7D6 = Q8xD27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4- | C36.7D6 | 432,49 |
C36.8D6 = Q8:3D27 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | 4+ | C36.8D6 | 432,50 |
C36.9D6 = D36:S3 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.9D6 | 432,68 |
C36.10D6 = C9:D24 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4+ | C36.10D6 | 432,69 |
C36.11D6 = D12.D9 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.11D6 | 432,70 |
C36.12D6 = C36.D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4- | C36.12D6 | 432,71 |
C36.13D6 = Dic6:D9 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.13D6 | 432,72 |
C36.14D6 = C18.D12 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4+ | C36.14D6 | 432,73 |
C36.15D6 = C12.D18 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4 | C36.15D6 | 432,74 |
C36.16D6 = C9:Dic12 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4- | C36.16D6 | 432,75 |
C36.17D6 = C36.17D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.17D6 | 432,190 |
C36.18D6 = C36.18D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.18D6 | 432,191 |
C36.19D6 = C36.19D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 432 | | C36.19D6 | 432,194 |
C36.20D6 = C36.20D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.20D6 | 432,195 |
C36.21D6 = D9xDic6 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4- | C36.21D6 | 432,280 |
C36.22D6 = D18.D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.22D6 | 432,281 |
C36.23D6 = Dic6:5D9 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4+ | C36.23D6 | 432,282 |
C36.24D6 = Dic18:S3 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.24D6 | 432,283 |
C36.25D6 = D12:5D9 | φ: D6/C3 → C22 ⊆ Aut C36 | 144 | 4- | C36.25D6 | 432,285 |
C36.26D6 = D12:D9 | φ: D6/C3 → C22 ⊆ Aut C36 | 72 | 4 | C36.26D6 | 432,286 |
C36.27D6 = C36.27D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.27D6 | 432,389 |
C36.28D6 = Q8xC9:S3 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.28D6 | 432,392 |
C36.29D6 = C36.29D6 | φ: D6/C3 → C22 ⊆ Aut C36 | 216 | | C36.29D6 | 432,393 |
C36.30D6 = D36.S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4- | C36.30D6 | 432,62 |
C36.31D6 = C6.D36 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4+ | C36.31D6 | 432,63 |
C36.32D6 = C3:D72 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4+ | C36.32D6 | 432,64 |
C36.33D6 = C3:Dic36 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4- | C36.33D6 | 432,65 |
C36.34D6 = S3xDic18 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4- | C36.34D6 | 432,284 |
C36.35D6 = D36:5S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4- | C36.35D6 | 432,288 |
C36.36D6 = Dic9.D6 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4+ | C36.36D6 | 432,289 |
C36.37D6 = D9xC3:C8 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.37D6 | 432,58 |
C36.38D6 = C36.38D6 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.38D6 | 432,59 |
C36.39D6 = C36.39D6 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.39D6 | 432,60 |
C36.40D6 = C36.40D6 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.40D6 | 432,61 |
C36.41D6 = S3xC9:C8 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.41D6 | 432,66 |
C36.42D6 = D6.Dic9 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.42D6 | 432,67 |
C36.43D6 = D6.D18 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.43D6 | 432,287 |
C36.44D6 = C9xD4:S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.44D6 | 432,150 |
C36.45D6 = C9xD4.S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.45D6 | 432,151 |
C36.46D6 = C9xQ8:2S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.46D6 | 432,158 |
C36.47D6 = C9xC3:Q16 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.47D6 | 432,159 |
C36.48D6 = C9xD4:2S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 72 | 4 | C36.48D6 | 432,359 |
C36.49D6 = S3xQ8xC9 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.49D6 | 432,366 |
C36.50D6 = C9xQ8:3S3 | φ: D6/S3 → C2 ⊆ Aut C36 | 144 | 4 | C36.50D6 | 432,367 |
C36.51D6 = Dic108 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | 2- | C36.51D6 | 432,4 |
C36.52D6 = C216:C2 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.52D6 | 432,7 |
C36.53D6 = D216 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2+ | C36.53D6 | 432,8 |
C36.54D6 = C2xDic54 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | | C36.54D6 | 432,43 |
C36.55D6 = C2xD108 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.55D6 | 432,45 |
C36.56D6 = C24.D9 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | | C36.56D6 | 432,168 |
C36.57D6 = C24:D9 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.57D6 | 432,171 |
C36.58D6 = C72:1S3 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.58D6 | 432,172 |
C36.59D6 = C2xC12.D9 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | | C36.59D6 | 432,380 |
C36.60D6 = C8xD27 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.60D6 | 432,5 |
C36.61D6 = C8:D27 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.61D6 | 432,6 |
C36.62D6 = C2xC27:C8 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | | C36.62D6 | 432,9 |
C36.63D6 = C4.Dic27 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.63D6 | 432,10 |
C36.64D6 = C2xC4xD27 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.64D6 | 432,44 |
C36.65D6 = D108:5C2 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | 2 | C36.65D6 | 432,46 |
C36.66D6 = C8xC9:S3 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.66D6 | 432,169 |
C36.67D6 = C72:S3 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.67D6 | 432,170 |
C36.68D6 = C2xC36.S3 | φ: D6/C6 → C2 ⊆ Aut C36 | 432 | | C36.68D6 | 432,178 |
C36.69D6 = C36.69D6 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.69D6 | 432,179 |
C36.70D6 = C36.70D6 | φ: D6/C6 → C2 ⊆ Aut C36 | 216 | | C36.70D6 | 432,383 |
C36.71D6 = C9xC24:C2 | φ: D6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.71D6 | 432,111 |
C36.72D6 = C9xD24 | φ: D6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.72D6 | 432,112 |
C36.73D6 = C9xDic12 | φ: D6/C6 → C2 ⊆ Aut C36 | 144 | 2 | C36.73D6 | 432,113 |
C36.74D6 = C18xDic6 | φ: D6/C6 → C2 ⊆ Aut C36 | 144 | | C36.74D6 | 432,341 |
C36.75D6 = C9xC4oD12 | φ: D6/C6 → C2 ⊆ Aut C36 | 72 | 2 | C36.75D6 | 432,347 |
C36.76D6 = S3xC72 | central extension (φ=1) | 144 | 2 | C36.76D6 | 432,109 |
C36.77D6 = C9xC8:S3 | central extension (φ=1) | 144 | 2 | C36.77D6 | 432,110 |
C36.78D6 = C18xC3:C8 | central extension (φ=1) | 144 | | C36.78D6 | 432,126 |
C36.79D6 = C9xC4.Dic3 | central extension (φ=1) | 72 | 2 | C36.79D6 | 432,127 |
x
:
Z
F
o
wr
Q
<