extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1D18 = D4.D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4- | C12.1D18 | 432,15 |
C12.2D18 = D4⋊D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4+ | C12.2D18 | 432,16 |
C12.3D18 = C27⋊Q16 | φ: D18/C9 → C22 ⊆ Aut C12 | 432 | 4- | C12.3D18 | 432,17 |
C12.4D18 = Q8⋊2D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4+ | C12.4D18 | 432,18 |
C12.5D18 = D4×D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 108 | 4+ | C12.5D18 | 432,47 |
C12.6D18 = D4⋊2D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4- | C12.6D18 | 432,48 |
C12.7D18 = Q8×D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4- | C12.7D18 | 432,49 |
C12.8D18 = Q8⋊3D27 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | 4+ | C12.8D18 | 432,50 |
C12.9D18 = D36.S3 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4- | C12.9D18 | 432,62 |
C12.10D18 = C6.D36 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4+ | C12.10D18 | 432,63 |
C12.11D18 = C3⋊D72 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4+ | C12.11D18 | 432,64 |
C12.12D18 = C3⋊Dic36 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4- | C12.12D18 | 432,65 |
C12.13D18 = D36⋊S3 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4 | C12.13D18 | 432,68 |
C12.14D18 = D12.D9 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4 | C12.14D18 | 432,70 |
C12.15D18 = Dic6⋊D9 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4 | C12.15D18 | 432,72 |
C12.16D18 = C12.D18 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4 | C12.16D18 | 432,74 |
C12.17D18 = C36.17D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.17D18 | 432,190 |
C12.18D18 = C36.18D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.18D18 | 432,191 |
C12.19D18 = C36.19D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 432 | | C12.19D18 | 432,194 |
C12.20D18 = C36.20D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.20D18 | 432,195 |
C12.21D18 = D18.D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4 | C12.21D18 | 432,281 |
C12.22D18 = Dic18⋊S3 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4 | C12.22D18 | 432,283 |
C12.23D18 = S3×Dic18 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4- | C12.23D18 | 432,284 |
C12.24D18 = D12⋊D9 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4 | C12.24D18 | 432,286 |
C12.25D18 = D36⋊5S3 | φ: D18/C9 → C22 ⊆ Aut C12 | 144 | 4- | C12.25D18 | 432,288 |
C12.26D18 = Dic9.D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 72 | 4+ | C12.26D18 | 432,289 |
C12.27D18 = C36.27D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.27D18 | 432,389 |
C12.28D18 = Q8×C9⋊S3 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.28D18 | 432,392 |
C12.29D18 = C36.29D6 | φ: D18/C9 → C22 ⊆ Aut C12 | 216 | | C12.29D18 | 432,393 |
C12.30D18 = C9⋊D24 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4+ | C12.30D18 | 432,69 |
C12.31D18 = C36.D6 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4- | C12.31D18 | 432,71 |
C12.32D18 = C18.D12 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4+ | C12.32D18 | 432,73 |
C12.33D18 = C9⋊Dic12 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4- | C12.33D18 | 432,75 |
C12.34D18 = D9×Dic6 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4- | C12.34D18 | 432,280 |
C12.35D18 = Dic6⋊5D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4+ | C12.35D18 | 432,282 |
C12.36D18 = D12⋊5D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4- | C12.36D18 | 432,285 |
C12.37D18 = D9×C3⋊C8 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.37D18 | 432,58 |
C12.38D18 = C36.38D6 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.38D18 | 432,59 |
C12.39D18 = C36.39D6 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.39D18 | 432,60 |
C12.40D18 = C36.40D6 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.40D18 | 432,61 |
C12.41D18 = S3×C9⋊C8 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.41D18 | 432,66 |
C12.42D18 = D6.Dic9 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.42D18 | 432,67 |
C12.43D18 = D6.D18 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.43D18 | 432,287 |
C12.44D18 = C3×D4.D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.44D18 | 432,148 |
C12.45D18 = C3×D4⋊D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.45D18 | 432,149 |
C12.46D18 = C3×C9⋊Q16 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.46D18 | 432,156 |
C12.47D18 = C3×Q8⋊2D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.47D18 | 432,157 |
C12.48D18 = C3×D4⋊2D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 72 | 4 | C12.48D18 | 432,357 |
C12.49D18 = C3×Q8×D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.49D18 | 432,364 |
C12.50D18 = C3×Q8⋊3D9 | φ: D18/D9 → C2 ⊆ Aut C12 | 144 | 4 | C12.50D18 | 432,365 |
C12.51D18 = Dic108 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | 2- | C12.51D18 | 432,4 |
C12.52D18 = C216⋊C2 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.52D18 | 432,7 |
C12.53D18 = D216 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2+ | C12.53D18 | 432,8 |
C12.54D18 = C2×Dic54 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | | C12.54D18 | 432,43 |
C12.55D18 = C2×D108 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.55D18 | 432,45 |
C12.56D18 = C24.D9 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | | C12.56D18 | 432,168 |
C12.57D18 = C24⋊D9 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.57D18 | 432,171 |
C12.58D18 = C72⋊1S3 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.58D18 | 432,172 |
C12.59D18 = C2×C12.D9 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | | C12.59D18 | 432,380 |
C12.60D18 = C8×D27 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.60D18 | 432,5 |
C12.61D18 = C8⋊D27 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.61D18 | 432,6 |
C12.62D18 = C2×C27⋊C8 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | | C12.62D18 | 432,9 |
C12.63D18 = C4.Dic27 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.63D18 | 432,10 |
C12.64D18 = C2×C4×D27 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.64D18 | 432,44 |
C12.65D18 = D108⋊5C2 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.65D18 | 432,46 |
C12.66D18 = C8×C9⋊S3 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.66D18 | 432,169 |
C12.67D18 = C72⋊S3 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.67D18 | 432,170 |
C12.68D18 = C2×C36.S3 | φ: D18/C18 → C2 ⊆ Aut C12 | 432 | | C12.68D18 | 432,178 |
C12.69D18 = C36.69D6 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.69D18 | 432,179 |
C12.70D18 = C36.70D6 | φ: D18/C18 → C2 ⊆ Aut C12 | 216 | | C12.70D18 | 432,383 |
C12.71D18 = C3×Dic36 | φ: D18/C18 → C2 ⊆ Aut C12 | 144 | 2 | C12.71D18 | 432,104 |
C12.72D18 = C3×C72⋊C2 | φ: D18/C18 → C2 ⊆ Aut C12 | 144 | 2 | C12.72D18 | 432,107 |
C12.73D18 = C3×D72 | φ: D18/C18 → C2 ⊆ Aut C12 | 144 | 2 | C12.73D18 | 432,108 |
C12.74D18 = C6×Dic18 | φ: D18/C18 → C2 ⊆ Aut C12 | 144 | | C12.74D18 | 432,340 |
C12.75D18 = D9×C24 | central extension (φ=1) | 144 | 2 | C12.75D18 | 432,105 |
C12.76D18 = C3×C8⋊D9 | central extension (φ=1) | 144 | 2 | C12.76D18 | 432,106 |
C12.77D18 = C6×C9⋊C8 | central extension (φ=1) | 144 | | C12.77D18 | 432,124 |
C12.78D18 = C3×C4.Dic9 | central extension (φ=1) | 72 | 2 | C12.78D18 | 432,125 |
C12.79D18 = C3×D36⋊5C2 | central extension (φ=1) | 72 | 2 | C12.79D18 | 432,344 |