Extensions 1→N→G→Q→1 with N=C12 and Q=D18

Direct product G=N×Q with N=C12 and Q=D18
dρLabelID
D9×C2×C12144D9xC2xC12432,342

Semidirect products G=N:Q with N=C12 and Q=D18
extensionφ:Q→Aut NdρLabelID
C121D18 = S3×D36φ: D18/C9C22 ⊆ Aut C12724+C12:1D18432,291
C122D18 = C36⋊D6φ: D18/C9C22 ⊆ Aut C12724C12:2D18432,293
C123D18 = D4×C9⋊S3φ: D18/C9C22 ⊆ Aut C12108C12:3D18432,388
C124D18 = D9×D12φ: D18/D9C2 ⊆ Aut C12724+C12:4D18432,292
C125D18 = C4×S3×D9φ: D18/D9C2 ⊆ Aut C12724C12:5D18432,290
C126D18 = C3×D4×D9φ: D18/D9C2 ⊆ Aut C12724C12:6D18432,356
C127D18 = C2×C36⋊S3φ: D18/C18C2 ⊆ Aut C12216C12:7D18432,382
C128D18 = C2×C4×C9⋊S3φ: D18/C18C2 ⊆ Aut C12216C12:8D18432,381
C129D18 = C6×D36φ: D18/C18C2 ⊆ Aut C12144C12:9D18432,343

Non-split extensions G=N.Q with N=C12 and Q=D18
extensionφ:Q→Aut NdρLabelID
C12.1D18 = D4.D27φ: D18/C9C22 ⊆ Aut C122164-C12.1D18432,15
C12.2D18 = D4⋊D27φ: D18/C9C22 ⊆ Aut C122164+C12.2D18432,16
C12.3D18 = C27⋊Q16φ: D18/C9C22 ⊆ Aut C124324-C12.3D18432,17
C12.4D18 = Q82D27φ: D18/C9C22 ⊆ Aut C122164+C12.4D18432,18
C12.5D18 = D4×D27φ: D18/C9C22 ⊆ Aut C121084+C12.5D18432,47
C12.6D18 = D42D27φ: D18/C9C22 ⊆ Aut C122164-C12.6D18432,48
C12.7D18 = Q8×D27φ: D18/C9C22 ⊆ Aut C122164-C12.7D18432,49
C12.8D18 = Q83D27φ: D18/C9C22 ⊆ Aut C122164+C12.8D18432,50
C12.9D18 = D36.S3φ: D18/C9C22 ⊆ Aut C121444-C12.9D18432,62
C12.10D18 = C6.D36φ: D18/C9C22 ⊆ Aut C12724+C12.10D18432,63
C12.11D18 = C3⋊D72φ: D18/C9C22 ⊆ Aut C12724+C12.11D18432,64
C12.12D18 = C3⋊Dic36φ: D18/C9C22 ⊆ Aut C121444-C12.12D18432,65
C12.13D18 = D36⋊S3φ: D18/C9C22 ⊆ Aut C121444C12.13D18432,68
C12.14D18 = D12.D9φ: D18/C9C22 ⊆ Aut C121444C12.14D18432,70
C12.15D18 = Dic6⋊D9φ: D18/C9C22 ⊆ Aut C121444C12.15D18432,72
C12.16D18 = C12.D18φ: D18/C9C22 ⊆ Aut C121444C12.16D18432,74
C12.17D18 = C36.17D6φ: D18/C9C22 ⊆ Aut C12216C12.17D18432,190
C12.18D18 = C36.18D6φ: D18/C9C22 ⊆ Aut C12216C12.18D18432,191
C12.19D18 = C36.19D6φ: D18/C9C22 ⊆ Aut C12432C12.19D18432,194
C12.20D18 = C36.20D6φ: D18/C9C22 ⊆ Aut C12216C12.20D18432,195
C12.21D18 = D18.D6φ: D18/C9C22 ⊆ Aut C12724C12.21D18432,281
C12.22D18 = Dic18⋊S3φ: D18/C9C22 ⊆ Aut C12724C12.22D18432,283
C12.23D18 = S3×Dic18φ: D18/C9C22 ⊆ Aut C121444-C12.23D18432,284
C12.24D18 = D12⋊D9φ: D18/C9C22 ⊆ Aut C12724C12.24D18432,286
C12.25D18 = D365S3φ: D18/C9C22 ⊆ Aut C121444-C12.25D18432,288
C12.26D18 = Dic9.D6φ: D18/C9C22 ⊆ Aut C12724+C12.26D18432,289
C12.27D18 = C36.27D6φ: D18/C9C22 ⊆ Aut C12216C12.27D18432,389
C12.28D18 = Q8×C9⋊S3φ: D18/C9C22 ⊆ Aut C12216C12.28D18432,392
C12.29D18 = C36.29D6φ: D18/C9C22 ⊆ Aut C12216C12.29D18432,393
C12.30D18 = C9⋊D24φ: D18/D9C2 ⊆ Aut C12724+C12.30D18432,69
C12.31D18 = C36.D6φ: D18/D9C2 ⊆ Aut C121444-C12.31D18432,71
C12.32D18 = C18.D12φ: D18/D9C2 ⊆ Aut C12724+C12.32D18432,73
C12.33D18 = C9⋊Dic12φ: D18/D9C2 ⊆ Aut C121444-C12.33D18432,75
C12.34D18 = D9×Dic6φ: D18/D9C2 ⊆ Aut C121444-C12.34D18432,280
C12.35D18 = Dic65D9φ: D18/D9C2 ⊆ Aut C12724+C12.35D18432,282
C12.36D18 = D125D9φ: D18/D9C2 ⊆ Aut C121444-C12.36D18432,285
C12.37D18 = D9×C3⋊C8φ: D18/D9C2 ⊆ Aut C121444C12.37D18432,58
C12.38D18 = C36.38D6φ: D18/D9C2 ⊆ Aut C12724C12.38D18432,59
C12.39D18 = C36.39D6φ: D18/D9C2 ⊆ Aut C121444C12.39D18432,60
C12.40D18 = C36.40D6φ: D18/D9C2 ⊆ Aut C12724C12.40D18432,61
C12.41D18 = S3×C9⋊C8φ: D18/D9C2 ⊆ Aut C121444C12.41D18432,66
C12.42D18 = D6.Dic9φ: D18/D9C2 ⊆ Aut C121444C12.42D18432,67
C12.43D18 = D6.D18φ: D18/D9C2 ⊆ Aut C12724C12.43D18432,287
C12.44D18 = C3×D4.D9φ: D18/D9C2 ⊆ Aut C12724C12.44D18432,148
C12.45D18 = C3×D4⋊D9φ: D18/D9C2 ⊆ Aut C12724C12.45D18432,149
C12.46D18 = C3×C9⋊Q16φ: D18/D9C2 ⊆ Aut C121444C12.46D18432,156
C12.47D18 = C3×Q82D9φ: D18/D9C2 ⊆ Aut C121444C12.47D18432,157
C12.48D18 = C3×D42D9φ: D18/D9C2 ⊆ Aut C12724C12.48D18432,357
C12.49D18 = C3×Q8×D9φ: D18/D9C2 ⊆ Aut C121444C12.49D18432,364
C12.50D18 = C3×Q83D9φ: D18/D9C2 ⊆ Aut C121444C12.50D18432,365
C12.51D18 = Dic108φ: D18/C18C2 ⊆ Aut C124322-C12.51D18432,4
C12.52D18 = C216⋊C2φ: D18/C18C2 ⊆ Aut C122162C12.52D18432,7
C12.53D18 = D216φ: D18/C18C2 ⊆ Aut C122162+C12.53D18432,8
C12.54D18 = C2×Dic54φ: D18/C18C2 ⊆ Aut C12432C12.54D18432,43
C12.55D18 = C2×D108φ: D18/C18C2 ⊆ Aut C12216C12.55D18432,45
C12.56D18 = C24.D9φ: D18/C18C2 ⊆ Aut C12432C12.56D18432,168
C12.57D18 = C24⋊D9φ: D18/C18C2 ⊆ Aut C12216C12.57D18432,171
C12.58D18 = C721S3φ: D18/C18C2 ⊆ Aut C12216C12.58D18432,172
C12.59D18 = C2×C12.D9φ: D18/C18C2 ⊆ Aut C12432C12.59D18432,380
C12.60D18 = C8×D27φ: D18/C18C2 ⊆ Aut C122162C12.60D18432,5
C12.61D18 = C8⋊D27φ: D18/C18C2 ⊆ Aut C122162C12.61D18432,6
C12.62D18 = C2×C27⋊C8φ: D18/C18C2 ⊆ Aut C12432C12.62D18432,9
C12.63D18 = C4.Dic27φ: D18/C18C2 ⊆ Aut C122162C12.63D18432,10
C12.64D18 = C2×C4×D27φ: D18/C18C2 ⊆ Aut C12216C12.64D18432,44
C12.65D18 = D1085C2φ: D18/C18C2 ⊆ Aut C122162C12.65D18432,46
C12.66D18 = C8×C9⋊S3φ: D18/C18C2 ⊆ Aut C12216C12.66D18432,169
C12.67D18 = C72⋊S3φ: D18/C18C2 ⊆ Aut C12216C12.67D18432,170
C12.68D18 = C2×C36.S3φ: D18/C18C2 ⊆ Aut C12432C12.68D18432,178
C12.69D18 = C36.69D6φ: D18/C18C2 ⊆ Aut C12216C12.69D18432,179
C12.70D18 = C36.70D6φ: D18/C18C2 ⊆ Aut C12216C12.70D18432,383
C12.71D18 = C3×Dic36φ: D18/C18C2 ⊆ Aut C121442C12.71D18432,104
C12.72D18 = C3×C72⋊C2φ: D18/C18C2 ⊆ Aut C121442C12.72D18432,107
C12.73D18 = C3×D72φ: D18/C18C2 ⊆ Aut C121442C12.73D18432,108
C12.74D18 = C6×Dic18φ: D18/C18C2 ⊆ Aut C12144C12.74D18432,340
C12.75D18 = D9×C24central extension (φ=1)1442C12.75D18432,105
C12.76D18 = C3×C8⋊D9central extension (φ=1)1442C12.76D18432,106
C12.77D18 = C6×C9⋊C8central extension (φ=1)144C12.77D18432,124
C12.78D18 = C3×C4.Dic9central extension (φ=1)722C12.78D18432,125
C12.79D18 = C3×D365C2central extension (φ=1)722C12.79D18432,344

׿
×
𝔽