extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1D12 = He3⋊3D8 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).1D12 | 432,83 |
(C3×C6).2D12 = He3⋊4SD16 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).2D12 | 432,84 |
(C3×C6).3D12 = He3⋊5SD16 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).3D12 | 432,85 |
(C3×C6).4D12 = He3⋊3Q16 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).4D12 | 432,86 |
(C3×C6).5D12 = C62.D6 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).5D12 | 432,95 |
(C3×C6).6D12 = C62.4D6 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).6D12 | 432,97 |
(C3×C6).7D12 = C62.5D6 | φ: D12/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).7D12 | 432,98 |
(C3×C6).8D12 = (C3×C6).8D12 | φ: D12/C3 → D4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).8D12 | 432,586 |
(C3×C6).9D12 = (C3×C6).9D12 | φ: D12/C3 → D4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).9D12 | 432,587 |
(C3×C6).10D12 = C32⋊2D24 | φ: D12/C3 → D4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).10D12 | 432,588 |
(C3×C6).11D12 = C33⋊8SD16 | φ: D12/C3 → D4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).11D12 | 432,589 |
(C3×C6).12D12 = C33⋊3Q16 | φ: D12/C3 → D4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).12D12 | 432,590 |
(C3×C6).13D12 = He3⋊4Q16 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | 6- | (C3xC6).13D12 | 432,114 |
(C3×C6).14D12 = He3⋊6SD16 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).14D12 | 432,117 |
(C3×C6).15D12 = He3⋊4D8 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6+ | (C3xC6).15D12 | 432,118 |
(C3×C6).16D12 = C72.C6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | 6- | (C3xC6).16D12 | 432,119 |
(C3×C6).17D12 = C72⋊2C6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).17D12 | 432,122 |
(C3×C6).18D12 = D72⋊C3 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6+ | (C3xC6).18D12 | 432,123 |
(C3×C6).19D12 = C62.20D6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).19D12 | 432,140 |
(C3×C6).20D12 = C62.21D6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).20D12 | 432,141 |
(C3×C6).21D12 = C36⋊C12 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).21D12 | 432,146 |
(C3×C6).22D12 = D18⋊C12 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).22D12 | 432,147 |
(C3×C6).23D12 = He3⋊7SD16 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).23D12 | 432,175 |
(C3×C6).24D12 = He3⋊5D8 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).24D12 | 432,176 |
(C3×C6).25D12 = He3⋊5Q16 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).25D12 | 432,177 |
(C3×C6).26D12 = C62.30D6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).26D12 | 432,188 |
(C3×C6).27D12 = C62.31D6 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).27D12 | 432,189 |
(C3×C6).28D12 = C2×D36⋊C3 | φ: D12/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).28D12 | 432,354 |
(C3×C6).29D12 = D36.S3 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | 4- | (C3xC6).29D12 | 432,62 |
(C3×C6).30D12 = C6.D36 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | 4+ | (C3xC6).30D12 | 432,63 |
(C3×C6).31D12 = C3⋊D72 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | 4+ | (C3xC6).31D12 | 432,64 |
(C3×C6).32D12 = C3⋊Dic36 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | 4- | (C3xC6).32D12 | 432,65 |
(C3×C6).33D12 = Dic3⋊Dic9 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).33D12 | 432,90 |
(C3×C6).34D12 = D18⋊Dic3 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).34D12 | 432,91 |
(C3×C6).35D12 = C6.18D36 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).35D12 | 432,92 |
(C3×C6).36D12 = C2×C3⋊D36 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).36D12 | 432,307 |
(C3×C6).37D12 = C33⋊8D8 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).37D12 | 432,438 |
(C3×C6).38D12 = C33⋊16SD16 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).38D12 | 432,443 |
(C3×C6).39D12 = C33⋊17SD16 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).39D12 | 432,444 |
(C3×C6).40D12 = C33⋊8Q16 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).40D12 | 432,447 |
(C3×C6).41D12 = C62.78D6 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).41D12 | 432,450 |
(C3×C6).42D12 = C62.79D6 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).42D12 | 432,451 |
(C3×C6).43D12 = C62.80D6 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).43D12 | 432,452 |
(C3×C6).44D12 = C33⋊9D8 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).44D12 | 432,457 |
(C3×C6).45D12 = C33⋊18SD16 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).45D12 | 432,458 |
(C3×C6).46D12 = C33⋊9Q16 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).46D12 | 432,459 |
(C3×C6).47D12 = C62.84D6 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).47D12 | 432,461 |
(C3×C6).48D12 = C62.85D6 | φ: D12/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).48D12 | 432,462 |
(C3×C6).49D12 = C3×Dic36 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).49D12 | 432,104 |
(C3×C6).50D12 = C3×C72⋊C2 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).50D12 | 432,107 |
(C3×C6).51D12 = C3×D72 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).51D12 | 432,108 |
(C3×C6).52D12 = C3×C4⋊Dic9 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).52D12 | 432,130 |
(C3×C6).53D12 = C3×D18⋊C4 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).53D12 | 432,134 |
(C3×C6).54D12 = C24.D9 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).54D12 | 432,168 |
(C3×C6).55D12 = C24⋊D9 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).55D12 | 432,171 |
(C3×C6).56D12 = C72⋊1S3 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).56D12 | 432,172 |
(C3×C6).57D12 = C36⋊Dic3 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).57D12 | 432,182 |
(C3×C6).58D12 = C6.11D36 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).58D12 | 432,183 |
(C3×C6).59D12 = C6×D36 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).59D12 | 432,343 |
(C3×C6).60D12 = C2×C36⋊S3 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).60D12 | 432,382 |
(C3×C6).61D12 = C3×C24⋊2S3 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).61D12 | 432,482 |
(C3×C6).62D12 = C3×C32⋊5D8 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).62D12 | 432,483 |
(C3×C6).63D12 = C3×C32⋊5Q16 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).63D12 | 432,484 |
(C3×C6).64D12 = C3×C12⋊Dic3 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).64D12 | 432,489 |
(C3×C6).65D12 = C3×C6.11D12 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).65D12 | 432,490 |
(C3×C6).66D12 = C33⋊21SD16 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).66D12 | 432,498 |
(C3×C6).67D12 = C33⋊12D8 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).67D12 | 432,499 |
(C3×C6).68D12 = C33⋊12Q16 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).68D12 | 432,500 |
(C3×C6).69D12 = C62.147D6 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).69D12 | 432,505 |
(C3×C6).70D12 = C62.148D6 | φ: D12/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).70D12 | 432,506 |
(C3×C6).71D12 = C3×C3⋊D24 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).71D12 | 432,419 |
(C3×C6).72D12 = C3×D12.S3 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).72D12 | 432,421 |
(C3×C6).73D12 = C3×C32⋊5SD16 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).73D12 | 432,422 |
(C3×C6).74D12 = C3×C32⋊3Q16 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).74D12 | 432,424 |
(C3×C6).75D12 = C3×D6⋊Dic3 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).75D12 | 432,426 |
(C3×C6).76D12 = C3×C6.D12 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).76D12 | 432,427 |
(C3×C6).77D12 = C3×Dic3⋊Dic3 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).77D12 | 432,428 |
(C3×C6).78D12 = C33⋊7D8 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).78D12 | 432,437 |
(C3×C6).79D12 = C33⋊14SD16 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).79D12 | 432,441 |
(C3×C6).80D12 = C33⋊15SD16 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).80D12 | 432,442 |
(C3×C6).81D12 = C33⋊7Q16 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).81D12 | 432,446 |
(C3×C6).82D12 = C62.77D6 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).82D12 | 432,449 |
(C3×C6).83D12 = C62.82D6 | φ: D12/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).83D12 | 432,454 |
(C3×C6).84D12 = C32×C24⋊C2 | central extension (φ=1) | 144 | | (C3xC6).84D12 | 432,466 |
(C3×C6).85D12 = C32×D24 | central extension (φ=1) | 144 | | (C3xC6).85D12 | 432,467 |
(C3×C6).86D12 = C32×Dic12 | central extension (φ=1) | 144 | | (C3xC6).86D12 | 432,468 |
(C3×C6).87D12 = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | (C3xC6).87D12 | 432,473 |
(C3×C6).88D12 = C32×D6⋊C4 | central extension (φ=1) | 144 | | (C3xC6).88D12 | 432,474 |