Extensions 1→N→G→Q→1 with N=C3xC6 and Q=D12

Direct product G=NxQ with N=C3xC6 and Q=D12
dρLabelID
C3xC6xD12144C3xC6xD12432,702

Semidirect products G=N:Q with N=C3xC6 and Q=D12
extensionφ:Q→Aut NdρLabelID
(C3xC6):D12 = C2xHe3:3D4φ: D12/C2D6 ⊆ Aut C3xC672(C3xC6):D12432,322
(C3xC6):2D12 = C2xC32:2D12φ: D12/C3D4 ⊆ Aut C3xC6248+(C3xC6):2D12432,756
(C3xC6):3D12 = C2xHe3:4D4φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6):3D12432,350
(C3xC6):4D12 = C2xHe3:5D4φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6):4D12432,386
(C3xC6):5D12 = C2xC33:8D4φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6):5D12432,682
(C3xC6):6D12 = C2xC33:9D4φ: D12/C6C22 ⊆ Aut C3xC648(C3xC6):6D12432,694
(C3xC6):7D12 = C6xC12:S3φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6):7D12432,712
(C3xC6):8D12 = C2xC33:12D4φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6):8D12432,722
(C3xC6):9D12 = C6xC3:D12φ: D12/D6C2 ⊆ Aut C3xC648(C3xC6):9D12432,656
(C3xC6):10D12 = C2xC33:7D4φ: D12/D6C2 ⊆ Aut C3xC672(C3xC6):10D12432,681

Non-split extensions G=N.Q with N=C3xC6 and Q=D12
extensionφ:Q→Aut NdρLabelID
(C3xC6).1D12 = He3:3D8φ: D12/C2D6 ⊆ Aut C3xC67212+(C3xC6).1D12432,83
(C3xC6).2D12 = He3:4SD16φ: D12/C2D6 ⊆ Aut C3xC67212-(C3xC6).2D12432,84
(C3xC6).3D12 = He3:5SD16φ: D12/C2D6 ⊆ Aut C3xC67212+(C3xC6).3D12432,85
(C3xC6).4D12 = He3:3Q16φ: D12/C2D6 ⊆ Aut C3xC614412-(C3xC6).4D12432,86
(C3xC6).5D12 = C62.D6φ: D12/C2D6 ⊆ Aut C3xC6144(C3xC6).5D12432,95
(C3xC6).6D12 = C62.4D6φ: D12/C2D6 ⊆ Aut C3xC672(C3xC6).6D12432,97
(C3xC6).7D12 = C62.5D6φ: D12/C2D6 ⊆ Aut C3xC672(C3xC6).7D12432,98
(C3xC6).8D12 = (C3xC6).8D12φ: D12/C3D4 ⊆ Aut C3xC6248+(C3xC6).8D12432,586
(C3xC6).9D12 = (C3xC6).9D12φ: D12/C3D4 ⊆ Aut C3xC6488-(C3xC6).9D12432,587
(C3xC6).10D12 = C32:2D24φ: D12/C3D4 ⊆ Aut C3xC6248+(C3xC6).10D12432,588
(C3xC6).11D12 = C33:8SD16φ: D12/C3D4 ⊆ Aut C3xC6248+(C3xC6).11D12432,589
(C3xC6).12D12 = C33:3Q16φ: D12/C3D4 ⊆ Aut C3xC6488-(C3xC6).12D12432,590
(C3xC6).13D12 = He3:4Q16φ: D12/C4S3 ⊆ Aut C3xC61446-(C3xC6).13D12432,114
(C3xC6).14D12 = He3:6SD16φ: D12/C4S3 ⊆ Aut C3xC6726(C3xC6).14D12432,117
(C3xC6).15D12 = He3:4D8φ: D12/C4S3 ⊆ Aut C3xC6726+(C3xC6).15D12432,118
(C3xC6).16D12 = C72.C6φ: D12/C4S3 ⊆ Aut C3xC61446-(C3xC6).16D12432,119
(C3xC6).17D12 = C72:2C6φ: D12/C4S3 ⊆ Aut C3xC6726(C3xC6).17D12432,122
(C3xC6).18D12 = D72:C3φ: D12/C4S3 ⊆ Aut C3xC6726+(C3xC6).18D12432,123
(C3xC6).19D12 = C62.20D6φ: D12/C4S3 ⊆ Aut C3xC6144(C3xC6).19D12432,140
(C3xC6).20D12 = C62.21D6φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6).20D12432,141
(C3xC6).21D12 = C36:C12φ: D12/C4S3 ⊆ Aut C3xC6144(C3xC6).21D12432,146
(C3xC6).22D12 = D18:C12φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6).22D12432,147
(C3xC6).23D12 = He3:7SD16φ: D12/C4S3 ⊆ Aut C3xC6726(C3xC6).23D12432,175
(C3xC6).24D12 = He3:5D8φ: D12/C4S3 ⊆ Aut C3xC6726(C3xC6).24D12432,176
(C3xC6).25D12 = He3:5Q16φ: D12/C4S3 ⊆ Aut C3xC61446(C3xC6).25D12432,177
(C3xC6).26D12 = C62.30D6φ: D12/C4S3 ⊆ Aut C3xC6144(C3xC6).26D12432,188
(C3xC6).27D12 = C62.31D6φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6).27D12432,189
(C3xC6).28D12 = C2xD36:C3φ: D12/C4S3 ⊆ Aut C3xC672(C3xC6).28D12432,354
(C3xC6).29D12 = D36.S3φ: D12/C6C22 ⊆ Aut C3xC61444-(C3xC6).29D12432,62
(C3xC6).30D12 = C6.D36φ: D12/C6C22 ⊆ Aut C3xC6724+(C3xC6).30D12432,63
(C3xC6).31D12 = C3:D72φ: D12/C6C22 ⊆ Aut C3xC6724+(C3xC6).31D12432,64
(C3xC6).32D12 = C3:Dic36φ: D12/C6C22 ⊆ Aut C3xC61444-(C3xC6).32D12432,65
(C3xC6).33D12 = Dic3:Dic9φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).33D12432,90
(C3xC6).34D12 = D18:Dic3φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).34D12432,91
(C3xC6).35D12 = C6.18D36φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6).35D12432,92
(C3xC6).36D12 = C2xC3:D36φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6).36D12432,307
(C3xC6).37D12 = C33:8D8φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6).37D12432,438
(C3xC6).38D12 = C33:16SD16φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).38D12432,443
(C3xC6).39D12 = C33:17SD16φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6).39D12432,444
(C3xC6).40D12 = C33:8Q16φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).40D12432,447
(C3xC6).41D12 = C62.78D6φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).41D12432,450
(C3xC6).42D12 = C62.79D6φ: D12/C6C22 ⊆ Aut C3xC672(C3xC6).42D12432,451
(C3xC6).43D12 = C62.80D6φ: D12/C6C22 ⊆ Aut C3xC6144(C3xC6).43D12432,452
(C3xC6).44D12 = C33:9D8φ: D12/C6C22 ⊆ Aut C3xC6484(C3xC6).44D12432,457
(C3xC6).45D12 = C33:18SD16φ: D12/C6C22 ⊆ Aut C3xC6484(C3xC6).45D12432,458
(C3xC6).46D12 = C33:9Q16φ: D12/C6C22 ⊆ Aut C3xC6484(C3xC6).46D12432,459
(C3xC6).47D12 = C62.84D6φ: D12/C6C22 ⊆ Aut C3xC648(C3xC6).47D12432,461
(C3xC6).48D12 = C62.85D6φ: D12/C6C22 ⊆ Aut C3xC648(C3xC6).48D12432,462
(C3xC6).49D12 = C3xDic36φ: D12/C12C2 ⊆ Aut C3xC61442(C3xC6).49D12432,104
(C3xC6).50D12 = C3xC72:C2φ: D12/C12C2 ⊆ Aut C3xC61442(C3xC6).50D12432,107
(C3xC6).51D12 = C3xD72φ: D12/C12C2 ⊆ Aut C3xC61442(C3xC6).51D12432,108
(C3xC6).52D12 = C3xC4:Dic9φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).52D12432,130
(C3xC6).53D12 = C3xD18:C4φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).53D12432,134
(C3xC6).54D12 = C24.D9φ: D12/C12C2 ⊆ Aut C3xC6432(C3xC6).54D12432,168
(C3xC6).55D12 = C24:D9φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).55D12432,171
(C3xC6).56D12 = C72:1S3φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).56D12432,172
(C3xC6).57D12 = C36:Dic3φ: D12/C12C2 ⊆ Aut C3xC6432(C3xC6).57D12432,182
(C3xC6).58D12 = C6.11D36φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).58D12432,183
(C3xC6).59D12 = C6xD36φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).59D12432,343
(C3xC6).60D12 = C2xC36:S3φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).60D12432,382
(C3xC6).61D12 = C3xC24:2S3φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).61D12432,482
(C3xC6).62D12 = C3xC32:5D8φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).62D12432,483
(C3xC6).63D12 = C3xC32:5Q16φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).63D12432,484
(C3xC6).64D12 = C3xC12:Dic3φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).64D12432,489
(C3xC6).65D12 = C3xC6.11D12φ: D12/C12C2 ⊆ Aut C3xC6144(C3xC6).65D12432,490
(C3xC6).66D12 = C33:21SD16φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).66D12432,498
(C3xC6).67D12 = C33:12D8φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).67D12432,499
(C3xC6).68D12 = C33:12Q16φ: D12/C12C2 ⊆ Aut C3xC6432(C3xC6).68D12432,500
(C3xC6).69D12 = C62.147D6φ: D12/C12C2 ⊆ Aut C3xC6432(C3xC6).69D12432,505
(C3xC6).70D12 = C62.148D6φ: D12/C12C2 ⊆ Aut C3xC6216(C3xC6).70D12432,506
(C3xC6).71D12 = C3xC3:D24φ: D12/D6C2 ⊆ Aut C3xC6484(C3xC6).71D12432,419
(C3xC6).72D12 = C3xD12.S3φ: D12/D6C2 ⊆ Aut C3xC6484(C3xC6).72D12432,421
(C3xC6).73D12 = C3xC32:5SD16φ: D12/D6C2 ⊆ Aut C3xC6484(C3xC6).73D12432,422
(C3xC6).74D12 = C3xC32:3Q16φ: D12/D6C2 ⊆ Aut C3xC6484(C3xC6).74D12432,424
(C3xC6).75D12 = C3xD6:Dic3φ: D12/D6C2 ⊆ Aut C3xC648(C3xC6).75D12432,426
(C3xC6).76D12 = C3xC6.D12φ: D12/D6C2 ⊆ Aut C3xC648(C3xC6).76D12432,427
(C3xC6).77D12 = C3xDic3:Dic3φ: D12/D6C2 ⊆ Aut C3xC648(C3xC6).77D12432,428
(C3xC6).78D12 = C33:7D8φ: D12/D6C2 ⊆ Aut C3xC672(C3xC6).78D12432,437
(C3xC6).79D12 = C33:14SD16φ: D12/D6C2 ⊆ Aut C3xC6144(C3xC6).79D12432,441
(C3xC6).80D12 = C33:15SD16φ: D12/D6C2 ⊆ Aut C3xC672(C3xC6).80D12432,442
(C3xC6).81D12 = C33:7Q16φ: D12/D6C2 ⊆ Aut C3xC6144(C3xC6).81D12432,446
(C3xC6).82D12 = C62.77D6φ: D12/D6C2 ⊆ Aut C3xC6144(C3xC6).82D12432,449
(C3xC6).83D12 = C62.82D6φ: D12/D6C2 ⊆ Aut C3xC6144(C3xC6).83D12432,454
(C3xC6).84D12 = C32xC24:C2central extension (φ=1)144(C3xC6).84D12432,466
(C3xC6).85D12 = C32xD24central extension (φ=1)144(C3xC6).85D12432,467
(C3xC6).86D12 = C32xDic12central extension (φ=1)144(C3xC6).86D12432,468
(C3xC6).87D12 = C32xC4:Dic3central extension (φ=1)144(C3xC6).87D12432,473
(C3xC6).88D12 = C32xD6:C4central extension (φ=1)144(C3xC6).88D12432,474

׿
x
:
Z
F
o
wr
Q
<