extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3)⋊1D6 = D6⋊S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3):1D6 | 432,600 |
(C3×Dic3)⋊2D6 = (S3×C6)⋊D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3):2D6 | 432,601 |
(C3×Dic3)⋊3D6 = C3⋊S3⋊4D12 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3):3D6 | 432,602 |
(C3×Dic3)⋊4D6 = C3⋊S3×C3⋊D4 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3):4D6 | 432,685 |
(C3×Dic3)⋊5D6 = C62⋊23D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 36 | | (C3xDic3):5D6 | 432,686 |
(C3×Dic3)⋊6D6 = S3×C3⋊D12 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3):6D6 | 432,598 |
(C3×Dic3)⋊7D6 = S32×Dic3 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3):7D6 | 432,594 |
(C3×Dic3)⋊8D6 = S3×C6.D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3):8D6 | 432,595 |
(C3×Dic3)⋊9D6 = Dic3⋊6S32 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3):9D6 | 432,596 |
(C3×Dic3)⋊10D6 = C3×S3×C3⋊D4 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 4 | (C3xDic3):10D6 | 432,658 |
(C3×Dic3)⋊11D6 = C3×Dic3⋊D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 4 | (C3xDic3):11D6 | 432,659 |
(C3×Dic3)⋊12D6 = S3×C12⋊S3 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3):12D6 | 432,671 |
(C3×Dic3)⋊13D6 = C2×C33⋊8D4 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3):13D6 | 432,682 |
(C3×Dic3)⋊14D6 = C4×S3×C3⋊S3 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3):14D6 | 432,670 |
(C3×Dic3)⋊15D6 = C2×Dic3×C3⋊S3 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3):15D6 | 432,677 |
(C3×Dic3)⋊16D6 = C2×C33⋊8(C2×C4) | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3):16D6 | 432,679 |
(C3×Dic3)⋊17D6 = C3×S3×D12 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3):17D6 | 432,649 |
(C3×Dic3)⋊18D6 = C6×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):18D6 | 432,656 |
(C3×Dic3)⋊19D6 = S32×C12 | φ: trivial image | 48 | 4 | (C3xDic3):19D6 | 432,648 |
(C3×Dic3)⋊20D6 = C6×C6.D6 | φ: trivial image | 48 | | (C3xDic3):20D6 | 432,654 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3).1D6 = D9×Dic6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 144 | 4- | (C3xDic3).1D6 | 432,280 |
(C3×Dic3).2D6 = D18.D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).2D6 | 432,281 |
(C3×Dic3).3D6 = Dic6⋊5D9 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4+ | (C3xDic3).3D6 | 432,282 |
(C3×Dic3).4D6 = Dic18⋊S3 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).4D6 | 432,283 |
(C3×Dic3).5D6 = Dic3.D18 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).5D6 | 432,309 |
(C3×Dic3).6D6 = D18.4D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4- | (C3xDic3).6D6 | 432,310 |
(C3×Dic3).7D6 = D9×C3⋊D4 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).7D6 | 432,314 |
(C3×Dic3).8D6 = D18⋊D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 36 | 4+ | (C3xDic3).8D6 | 432,315 |
(C3×Dic3).9D6 = C33⋊6(C2×Q8) | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3).9D6 | 432,605 |
(C3×Dic3).10D6 = D6.S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).10D6 | 432,607 |
(C3×Dic3).11D6 = D6.3S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3).11D6 | 432,609 |
(C3×Dic3).12D6 = D6.6S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).12D6 | 432,611 |
(C3×Dic3).13D6 = C3⋊S3×Dic6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).13D6 | 432,663 |
(C3×Dic3).14D6 = C12.39S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).14D6 | 432,664 |
(C3×Dic3).15D6 = C12.40S32 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).15D6 | 432,665 |
(C3×Dic3).16D6 = C32⋊9(S3×Q8) | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).16D6 | 432,666 |
(C3×Dic3).17D6 = C62.90D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).17D6 | 432,675 |
(C3×Dic3).18D6 = C62.91D6 | φ: D6/C3 → C22 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).18D6 | 432,676 |
(C3×Dic3).19D6 = S3×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).19D6 | 432,603 |
(C3×Dic3).20D6 = C33⋊5(C2×Q8) | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).20D6 | 432,604 |
(C3×Dic3).21D6 = D6.4S32 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).21D6 | 432,608 |
(C3×Dic3).22D6 = Dic3.S32 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3).22D6 | 432,612 |
(C3×Dic3).23D6 = (S3×C6).D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 8+ | (C3xDic3).23D6 | 432,606 |
(C3×Dic3).24D6 = C3×D12⋊S3 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).24D6 | 432,644 |
(C3×Dic3).25D6 = C3×Dic3.D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).25D6 | 432,645 |
(C3×Dic3).26D6 = C3×D6.6D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).26D6 | 432,647 |
(C3×Dic3).27D6 = C3×D6.4D6 | φ: D6/S3 → C2 ⊆ Out C3×Dic3 | 24 | 4 | (C3xDic3).27D6 | 432,653 |
(C3×Dic3).28D6 = S3×Dic18 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | 4- | (C3xDic3).28D6 | 432,284 |
(C3×Dic3).29D6 = D6.D18 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).29D6 | 432,287 |
(C3×Dic3).30D6 = S3×D36 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | 4+ | (C3xDic3).30D6 | 432,291 |
(C3×Dic3).31D6 = C2×C9⋊Dic6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).31D6 | 432,303 |
(C3×Dic3).32D6 = D18.3D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).32D6 | 432,305 |
(C3×Dic3).33D6 = C2×C3⋊D36 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).33D6 | 432,307 |
(C3×Dic3).34D6 = S3×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).34D6 | 432,660 |
(C3×Dic3).35D6 = C12.73S32 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).35D6 | 432,667 |
(C3×Dic3).36D6 = C2×C33⋊4Q8 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).36D6 | 432,683 |
(C3×Dic3).37D6 = D36⋊5S3 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | 4- | (C3xDic3).37D6 | 432,288 |
(C3×Dic3).38D6 = Dic9.D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | 4+ | (C3xDic3).38D6 | 432,289 |
(C3×Dic3).39D6 = C4×S3×D9 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | 4 | (C3xDic3).39D6 | 432,290 |
(C3×Dic3).40D6 = C2×Dic3×D9 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).40D6 | 432,304 |
(C3×Dic3).41D6 = C2×C18.D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).41D6 | 432,306 |
(C3×Dic3).42D6 = C12.57S32 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 144 | | (C3xDic3).42D6 | 432,668 |
(C3×Dic3).43D6 = C12.58S32 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).43D6 | 432,669 |
(C3×Dic3).44D6 = C62.93D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 72 | | (C3xDic3).44D6 | 432,678 |
(C3×Dic3).45D6 = C3×S3×Dic6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).45D6 | 432,642 |
(C3×Dic3).46D6 = C3×D6.D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).46D6 | 432,646 |
(C3×Dic3).47D6 = C3×D6.3D6 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 24 | 4 | (C3xDic3).47D6 | 432,652 |
(C3×Dic3).48D6 = C6×C32⋊2Q8 | φ: D6/C6 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).48D6 | 432,657 |
(C3×Dic3).49D6 = C3×D12⋊5S3 | φ: trivial image | 48 | 4 | (C3xDic3).49D6 | 432,643 |