Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=D6

Direct product G=N×Q with N=C3×Dic3 and Q=D6
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=C3×Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1D6 = D6⋊S32φ: D6/C3C22 ⊆ Out C3×Dic3488-(C3xDic3):1D6432,600
(C3×Dic3)⋊2D6 = (S3×C6)⋊D6φ: D6/C3C22 ⊆ Out C3×Dic3248+(C3xDic3):2D6432,601
(C3×Dic3)⋊3D6 = C3⋊S34D12φ: D6/C3C22 ⊆ Out C3×Dic3248+(C3xDic3):3D6432,602
(C3×Dic3)⋊4D6 = C3⋊S3×C3⋊D4φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3):4D6432,685
(C3×Dic3)⋊5D6 = C6223D6φ: D6/C3C22 ⊆ Out C3×Dic336(C3xDic3):5D6432,686
(C3×Dic3)⋊6D6 = S3×C3⋊D12φ: D6/S3C2 ⊆ Out C3×Dic3248+(C3xDic3):6D6432,598
(C3×Dic3)⋊7D6 = S32×Dic3φ: D6/S3C2 ⊆ Out C3×Dic3488-(C3xDic3):7D6432,594
(C3×Dic3)⋊8D6 = S3×C6.D6φ: D6/S3C2 ⊆ Out C3×Dic3248+(C3xDic3):8D6432,595
(C3×Dic3)⋊9D6 = Dic36S32φ: D6/S3C2 ⊆ Out C3×Dic3488-(C3xDic3):9D6432,596
(C3×Dic3)⋊10D6 = C3×S3×C3⋊D4φ: D6/S3C2 ⊆ Out C3×Dic3244(C3xDic3):10D6432,658
(C3×Dic3)⋊11D6 = C3×Dic3⋊D6φ: D6/S3C2 ⊆ Out C3×Dic3244(C3xDic3):11D6432,659
(C3×Dic3)⋊12D6 = S3×C12⋊S3φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3):12D6432,671
(C3×Dic3)⋊13D6 = C2×C338D4φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3):13D6432,682
(C3×Dic3)⋊14D6 = C4×S3×C3⋊S3φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3):14D6432,670
(C3×Dic3)⋊15D6 = C2×Dic3×C3⋊S3φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3):15D6432,677
(C3×Dic3)⋊16D6 = C2×C338(C2×C4)φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3):16D6432,679
(C3×Dic3)⋊17D6 = C3×S3×D12φ: D6/C6C2 ⊆ Out C3×Dic3484(C3xDic3):17D6432,649
(C3×Dic3)⋊18D6 = C6×C3⋊D12φ: D6/C6C2 ⊆ Out C3×Dic348(C3xDic3):18D6432,656
(C3×Dic3)⋊19D6 = S32×C12φ: trivial image484(C3xDic3):19D6432,648
(C3×Dic3)⋊20D6 = C6×C6.D6φ: trivial image48(C3xDic3):20D6432,654

Non-split extensions G=N.Q with N=C3×Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1D6 = D9×Dic6φ: D6/C3C22 ⊆ Out C3×Dic31444-(C3xDic3).1D6432,280
(C3×Dic3).2D6 = D18.D6φ: D6/C3C22 ⊆ Out C3×Dic3724(C3xDic3).2D6432,281
(C3×Dic3).3D6 = Dic65D9φ: D6/C3C22 ⊆ Out C3×Dic3724+(C3xDic3).3D6432,282
(C3×Dic3).4D6 = Dic18⋊S3φ: D6/C3C22 ⊆ Out C3×Dic3724(C3xDic3).4D6432,283
(C3×Dic3).5D6 = Dic3.D18φ: D6/C3C22 ⊆ Out C3×Dic3724(C3xDic3).5D6432,309
(C3×Dic3).6D6 = D18.4D6φ: D6/C3C22 ⊆ Out C3×Dic3724-(C3xDic3).6D6432,310
(C3×Dic3).7D6 = D9×C3⋊D4φ: D6/C3C22 ⊆ Out C3×Dic3724(C3xDic3).7D6432,314
(C3×Dic3).8D6 = D18⋊D6φ: D6/C3C22 ⊆ Out C3×Dic3364+(C3xDic3).8D6432,315
(C3×Dic3).9D6 = C336(C2×Q8)φ: D6/C3C22 ⊆ Out C3×Dic3248+(C3xDic3).9D6432,605
(C3×Dic3).10D6 = D6.S32φ: D6/C3C22 ⊆ Out C3×Dic3488-(C3xDic3).10D6432,607
(C3×Dic3).11D6 = D6.3S32φ: D6/C3C22 ⊆ Out C3×Dic3248+(C3xDic3).11D6432,609
(C3×Dic3).12D6 = D6.6S32φ: D6/C3C22 ⊆ Out C3×Dic3488-(C3xDic3).12D6432,611
(C3×Dic3).13D6 = C3⋊S3×Dic6φ: D6/C3C22 ⊆ Out C3×Dic3144(C3xDic3).13D6432,663
(C3×Dic3).14D6 = C12.39S32φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3).14D6432,664
(C3×Dic3).15D6 = C12.40S32φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3).15D6432,665
(C3×Dic3).16D6 = C329(S3×Q8)φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3).16D6432,666
(C3×Dic3).17D6 = C62.90D6φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3).17D6432,675
(C3×Dic3).18D6 = C62.91D6φ: D6/C3C22 ⊆ Out C3×Dic372(C3xDic3).18D6432,676
(C3×Dic3).19D6 = S3×C322Q8φ: D6/S3C2 ⊆ Out C3×Dic3488-(C3xDic3).19D6432,603
(C3×Dic3).20D6 = C335(C2×Q8)φ: D6/S3C2 ⊆ Out C3×Dic3488-(C3xDic3).20D6432,604
(C3×Dic3).21D6 = D6.4S32φ: D6/S3C2 ⊆ Out C3×Dic3488-(C3xDic3).21D6432,608
(C3×Dic3).22D6 = Dic3.S32φ: D6/S3C2 ⊆ Out C3×Dic3248+(C3xDic3).22D6432,612
(C3×Dic3).23D6 = (S3×C6).D6φ: D6/S3C2 ⊆ Out C3×Dic3248+(C3xDic3).23D6432,606
(C3×Dic3).24D6 = C3×D12⋊S3φ: D6/S3C2 ⊆ Out C3×Dic3484(C3xDic3).24D6432,644
(C3×Dic3).25D6 = C3×Dic3.D6φ: D6/S3C2 ⊆ Out C3×Dic3484(C3xDic3).25D6432,645
(C3×Dic3).26D6 = C3×D6.6D6φ: D6/S3C2 ⊆ Out C3×Dic3484(C3xDic3).26D6432,647
(C3×Dic3).27D6 = C3×D6.4D6φ: D6/S3C2 ⊆ Out C3×Dic3244(C3xDic3).27D6432,653
(C3×Dic3).28D6 = S3×Dic18φ: D6/C6C2 ⊆ Out C3×Dic31444-(C3xDic3).28D6432,284
(C3×Dic3).29D6 = D6.D18φ: D6/C6C2 ⊆ Out C3×Dic3724(C3xDic3).29D6432,287
(C3×Dic3).30D6 = S3×D36φ: D6/C6C2 ⊆ Out C3×Dic3724+(C3xDic3).30D6432,291
(C3×Dic3).31D6 = C2×C9⋊Dic6φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).31D6432,303
(C3×Dic3).32D6 = D18.3D6φ: D6/C6C2 ⊆ Out C3×Dic3724(C3xDic3).32D6432,305
(C3×Dic3).33D6 = C2×C3⋊D36φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3).33D6432,307
(C3×Dic3).34D6 = S3×C324Q8φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).34D6432,660
(C3×Dic3).35D6 = C12.73S32φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3).35D6432,667
(C3×Dic3).36D6 = C2×C334Q8φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).36D6432,683
(C3×Dic3).37D6 = D365S3φ: D6/C6C2 ⊆ Out C3×Dic31444-(C3xDic3).37D6432,288
(C3×Dic3).38D6 = Dic9.D6φ: D6/C6C2 ⊆ Out C3×Dic3724+(C3xDic3).38D6432,289
(C3×Dic3).39D6 = C4×S3×D9φ: D6/C6C2 ⊆ Out C3×Dic3724(C3xDic3).39D6432,290
(C3×Dic3).40D6 = C2×Dic3×D9φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).40D6432,304
(C3×Dic3).41D6 = C2×C18.D6φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3).41D6432,306
(C3×Dic3).42D6 = C12.57S32φ: D6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).42D6432,668
(C3×Dic3).43D6 = C12.58S32φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3).43D6432,669
(C3×Dic3).44D6 = C62.93D6φ: D6/C6C2 ⊆ Out C3×Dic372(C3xDic3).44D6432,678
(C3×Dic3).45D6 = C3×S3×Dic6φ: D6/C6C2 ⊆ Out C3×Dic3484(C3xDic3).45D6432,642
(C3×Dic3).46D6 = C3×D6.D6φ: D6/C6C2 ⊆ Out C3×Dic3484(C3xDic3).46D6432,646
(C3×Dic3).47D6 = C3×D6.3D6φ: D6/C6C2 ⊆ Out C3×Dic3244(C3xDic3).47D6432,652
(C3×Dic3).48D6 = C6×C322Q8φ: D6/C6C2 ⊆ Out C3×Dic348(C3xDic3).48D6432,657
(C3×Dic3).49D6 = C3×D125S3φ: trivial image484(C3xDic3).49D6432,643

׿
×
𝔽