Extensions 1→N→G→Q→1 with N=C18 and Q=C3×D4

Direct product G=N×Q with N=C18 and Q=C3×D4
dρLabelID
D4×C3×C18216D4xC3xC18432,403

Semidirect products G=N:Q with N=C18 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C181(C3×D4) = C2×D36⋊C3φ: C3×D4/C4C6 ⊆ Aut C1872C18:1(C3xD4)432,354
C182(C3×D4) = C2×Dic9⋊C6φ: C3×D4/C22C6 ⊆ Aut C1872C18:2(C3xD4)432,379
C183(C3×D4) = C2×D4×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C1872C18:3(C3xD4)432,405
C184(C3×D4) = C6×D36φ: C3×D4/C12C2 ⊆ Aut C18144C18:4(C3xD4)432,343
C185(C3×D4) = C6×C9⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C1872C18:5(C3xD4)432,374

Non-split extensions G=N.Q with N=C18 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C18.1(C3×D4) = C72.C6φ: C3×D4/C4C6 ⊆ Aut C181446-C18.1(C3xD4)432,119
C18.2(C3×D4) = C722C6φ: C3×D4/C4C6 ⊆ Aut C18726C18.2(C3xD4)432,122
C18.3(C3×D4) = D72⋊C3φ: C3×D4/C4C6 ⊆ Aut C18726+C18.3(C3xD4)432,123
C18.4(C3×D4) = C36⋊C12φ: C3×D4/C4C6 ⊆ Aut C18144C18.4(C3xD4)432,146
C18.5(C3×D4) = D18⋊C12φ: C3×D4/C4C6 ⊆ Aut C1872C18.5(C3xD4)432,147
C18.6(C3×D4) = Dic9⋊C12φ: C3×D4/C22C6 ⊆ Aut C18144C18.6(C3xD4)432,145
C18.7(C3×D4) = Dic18⋊C6φ: C3×D4/C22C6 ⊆ Aut C187212-C18.7(C3xD4)432,154
C18.8(C3×D4) = D36⋊C6φ: C3×D4/C22C6 ⊆ Aut C187212+C18.8(C3xD4)432,155
C18.9(C3×D4) = Dic18.C6φ: C3×D4/C22C6 ⊆ Aut C1814412-C18.9(C3xD4)432,162
C18.10(C3×D4) = D36.C6φ: C3×D4/C22C6 ⊆ Aut C187212+C18.10(C3xD4)432,163
C18.11(C3×D4) = C62.27D6φ: C3×D4/C22C6 ⊆ Aut C1872C18.11(C3xD4)432,167
C18.12(C3×D4) = C22⋊C4×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C1872C18.12(C3xD4)432,205
C18.13(C3×D4) = C4⋊C4×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C18144C18.13(C3xD4)432,208
C18.14(C3×D4) = D8×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C18726C18.14(C3xD4)432,217
C18.15(C3×D4) = SD16×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C18726C18.15(C3xD4)432,220
C18.16(C3×D4) = Q16×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C181446C18.16(C3xD4)432,223
C18.17(C3×D4) = C3×Dic36φ: C3×D4/C12C2 ⊆ Aut C181442C18.17(C3xD4)432,104
C18.18(C3×D4) = C3×C72⋊C2φ: C3×D4/C12C2 ⊆ Aut C181442C18.18(C3xD4)432,107
C18.19(C3×D4) = C3×D72φ: C3×D4/C12C2 ⊆ Aut C181442C18.19(C3xD4)432,108
C18.20(C3×D4) = C3×C4⋊Dic9φ: C3×D4/C12C2 ⊆ Aut C18144C18.20(C3xD4)432,130
C18.21(C3×D4) = C3×D18⋊C4φ: C3×D4/C12C2 ⊆ Aut C18144C18.21(C3xD4)432,134
C18.22(C3×D4) = C3×Dic9⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C18144C18.22(C3xD4)432,129
C18.23(C3×D4) = C3×D4.D9φ: C3×D4/C2×C6C2 ⊆ Aut C18724C18.23(C3xD4)432,148
C18.24(C3×D4) = C3×D4⋊D9φ: C3×D4/C2×C6C2 ⊆ Aut C18724C18.24(C3xD4)432,149
C18.25(C3×D4) = C3×C9⋊Q16φ: C3×D4/C2×C6C2 ⊆ Aut C181444C18.25(C3xD4)432,156
C18.26(C3×D4) = C3×Q82D9φ: C3×D4/C2×C6C2 ⊆ Aut C181444C18.26(C3xD4)432,157
C18.27(C3×D4) = C3×C18.D4φ: C3×D4/C2×C6C2 ⊆ Aut C1872C18.27(C3xD4)432,164
C18.28(C3×D4) = C22⋊C4×C27central extension (φ=1)216C18.28(C3xD4)432,21
C18.29(C3×D4) = C4⋊C4×C27central extension (φ=1)432C18.29(C3xD4)432,22
C18.30(C3×D4) = D8×C27central extension (φ=1)2162C18.30(C3xD4)432,25
C18.31(C3×D4) = SD16×C27central extension (φ=1)2162C18.31(C3xD4)432,26
C18.32(C3×D4) = Q16×C27central extension (φ=1)4322C18.32(C3xD4)432,27
C18.33(C3×D4) = D4×C54central extension (φ=1)216C18.33(C3xD4)432,54
C18.34(C3×D4) = C22⋊C4×C3×C9central extension (φ=1)216C18.34(C3xD4)432,203
C18.35(C3×D4) = C4⋊C4×C3×C9central extension (φ=1)432C18.35(C3xD4)432,206
C18.36(C3×D4) = D8×C3×C9central extension (φ=1)216C18.36(C3xD4)432,215
C18.37(C3×D4) = SD16×C3×C9central extension (φ=1)216C18.37(C3xD4)432,218
C18.38(C3×D4) = Q16×C3×C9central extension (φ=1)432C18.38(C3xD4)432,221

׿
×
𝔽