extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C3×D4) = C72.C6 | φ: C3×D4/C4 → C6 ⊆ Aut C18 | 144 | 6- | C18.1(C3xD4) | 432,119 |
C18.2(C3×D4) = C72⋊2C6 | φ: C3×D4/C4 → C6 ⊆ Aut C18 | 72 | 6 | C18.2(C3xD4) | 432,122 |
C18.3(C3×D4) = D72⋊C3 | φ: C3×D4/C4 → C6 ⊆ Aut C18 | 72 | 6+ | C18.3(C3xD4) | 432,123 |
C18.4(C3×D4) = C36⋊C12 | φ: C3×D4/C4 → C6 ⊆ Aut C18 | 144 | | C18.4(C3xD4) | 432,146 |
C18.5(C3×D4) = D18⋊C12 | φ: C3×D4/C4 → C6 ⊆ Aut C18 | 72 | | C18.5(C3xD4) | 432,147 |
C18.6(C3×D4) = Dic9⋊C12 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 144 | | C18.6(C3xD4) | 432,145 |
C18.7(C3×D4) = Dic18⋊C6 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 72 | 12- | C18.7(C3xD4) | 432,154 |
C18.8(C3×D4) = D36⋊C6 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 72 | 12+ | C18.8(C3xD4) | 432,155 |
C18.9(C3×D4) = Dic18.C6 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 144 | 12- | C18.9(C3xD4) | 432,162 |
C18.10(C3×D4) = D36.C6 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 72 | 12+ | C18.10(C3xD4) | 432,163 |
C18.11(C3×D4) = C62.27D6 | φ: C3×D4/C22 → C6 ⊆ Aut C18 | 72 | | C18.11(C3xD4) | 432,167 |
C18.12(C3×D4) = C22⋊C4×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C18 | 72 | | C18.12(C3xD4) | 432,205 |
C18.13(C3×D4) = C4⋊C4×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C18 | 144 | | C18.13(C3xD4) | 432,208 |
C18.14(C3×D4) = D8×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C18 | 72 | 6 | C18.14(C3xD4) | 432,217 |
C18.15(C3×D4) = SD16×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C18 | 72 | 6 | C18.15(C3xD4) | 432,220 |
C18.16(C3×D4) = Q16×3- 1+2 | φ: C3×D4/D4 → C3 ⊆ Aut C18 | 144 | 6 | C18.16(C3xD4) | 432,223 |
C18.17(C3×D4) = C3×Dic36 | φ: C3×D4/C12 → C2 ⊆ Aut C18 | 144 | 2 | C18.17(C3xD4) | 432,104 |
C18.18(C3×D4) = C3×C72⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C18 | 144 | 2 | C18.18(C3xD4) | 432,107 |
C18.19(C3×D4) = C3×D72 | φ: C3×D4/C12 → C2 ⊆ Aut C18 | 144 | 2 | C18.19(C3xD4) | 432,108 |
C18.20(C3×D4) = C3×C4⋊Dic9 | φ: C3×D4/C12 → C2 ⊆ Aut C18 | 144 | | C18.20(C3xD4) | 432,130 |
C18.21(C3×D4) = C3×D18⋊C4 | φ: C3×D4/C12 → C2 ⊆ Aut C18 | 144 | | C18.21(C3xD4) | 432,134 |
C18.22(C3×D4) = C3×Dic9⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 144 | | C18.22(C3xD4) | 432,129 |
C18.23(C3×D4) = C3×D4.D9 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 72 | 4 | C18.23(C3xD4) | 432,148 |
C18.24(C3×D4) = C3×D4⋊D9 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 72 | 4 | C18.24(C3xD4) | 432,149 |
C18.25(C3×D4) = C3×C9⋊Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 144 | 4 | C18.25(C3xD4) | 432,156 |
C18.26(C3×D4) = C3×Q8⋊2D9 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 144 | 4 | C18.26(C3xD4) | 432,157 |
C18.27(C3×D4) = C3×C18.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C18 | 72 | | C18.27(C3xD4) | 432,164 |
C18.28(C3×D4) = C22⋊C4×C27 | central extension (φ=1) | 216 | | C18.28(C3xD4) | 432,21 |
C18.29(C3×D4) = C4⋊C4×C27 | central extension (φ=1) | 432 | | C18.29(C3xD4) | 432,22 |
C18.30(C3×D4) = D8×C27 | central extension (φ=1) | 216 | 2 | C18.30(C3xD4) | 432,25 |
C18.31(C3×D4) = SD16×C27 | central extension (φ=1) | 216 | 2 | C18.31(C3xD4) | 432,26 |
C18.32(C3×D4) = Q16×C27 | central extension (φ=1) | 432 | 2 | C18.32(C3xD4) | 432,27 |
C18.33(C3×D4) = D4×C54 | central extension (φ=1) | 216 | | C18.33(C3xD4) | 432,54 |
C18.34(C3×D4) = C22⋊C4×C3×C9 | central extension (φ=1) | 216 | | C18.34(C3xD4) | 432,203 |
C18.35(C3×D4) = C4⋊C4×C3×C9 | central extension (φ=1) | 432 | | C18.35(C3xD4) | 432,206 |
C18.36(C3×D4) = D8×C3×C9 | central extension (φ=1) | 216 | | C18.36(C3xD4) | 432,215 |
C18.37(C3×D4) = SD16×C3×C9 | central extension (φ=1) | 216 | | C18.37(C3xD4) | 432,218 |
C18.38(C3×D4) = Q16×C3×C9 | central extension (φ=1) | 432 | | C18.38(C3xD4) | 432,221 |