Copied to
clipboard

?

G = C2×Q16⋊D7order 448 = 26·7

Direct product of C2 and Q16⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q16⋊D7, Q168D14, C56.41C23, C28.11C24, D28.6C23, Dic14.7C23, C4.47(D4×D7), C7⋊C8.4C23, (C2×Q16)⋊11D7, (C4×D7).17D4, C28.86(C2×D4), Q8⋊D79C22, (Q8×D7)⋊7C22, (C14×Q16)⋊11C2, D14.52(C2×D4), (C2×C8).104D14, C7⋊Q169C22, (C4×D7).6C23, C4.11(C23×D7), C8.13(C22×D7), Q8.5(C22×D7), (C7×Q8).5C23, C56⋊C215C22, C8⋊D714C22, C143(C8.C22), (C2×Q8).153D14, Dic7.57(C2×D4), (C7×Q16)⋊12C22, C22.143(D4×D7), (C2×C28).528C23, (C2×C56).152C22, (C2×Dic7).194D4, (C22×D7).100D4, C14.112(C22×D4), Q82D7.4C22, (C2×D28).179C22, (Q8×C14).150C22, (C2×Dic14).199C22, (C2×Q8×D7)⋊16C2, C2.85(C2×D4×D7), C73(C2×C8.C22), (C2×C8⋊D7)⋊9C2, (C2×Q8⋊D7)⋊27C2, (C2×C56⋊C2)⋊25C2, (C2×C7⋊Q16)⋊28C2, (C2×C14).401(C2×D4), (C2×C7⋊C8).181C22, (C2×Q82D7).8C2, (C2×C4×D7).158C22, (C2×C4).616(C22×D7), SmallGroup(448,1217)

Series: Derived Chief Lower central Upper central

C1C28 — C2×Q16⋊D7
C1C7C14C28C4×D7C2×C4×D7C2×Q8×D7 — C2×Q16⋊D7
C7C14C28 — C2×Q16⋊D7

Subgroups: 1252 in 258 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×8], C22, C22 [×8], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×16], D4 [×7], Q8 [×4], Q8 [×9], C23 [×2], D7 [×4], C14, C14 [×2], C2×C8, C2×C8, M4(2) [×4], SD16 [×8], Q16 [×4], Q16 [×4], C22×C4 [×3], C2×D4 [×2], C2×Q8 [×2], C2×Q8 [×8], C4○D4 [×6], Dic7 [×2], Dic7 [×2], C28 [×2], C28 [×4], D14 [×2], D14 [×6], C2×C14, C2×M4(2), C2×SD16 [×2], C2×Q16, C2×Q16, C8.C22 [×8], C22×Q8, C2×C4○D4, C7⋊C8 [×2], C56 [×2], Dic14 [×2], Dic14 [×5], C4×D7 [×4], C4×D7 [×8], D28 [×2], D28 [×5], C2×Dic7, C2×Dic7, C2×C28, C2×C28 [×2], C7×Q8 [×4], C7×Q8 [×2], C22×D7, C22×D7, C2×C8.C22, C8⋊D7 [×4], C56⋊C2 [×4], C2×C7⋊C8, Q8⋊D7 [×4], C7⋊Q16 [×4], C2×C56, C7×Q16 [×4], C2×Dic14, C2×Dic14, C2×C4×D7, C2×C4×D7 [×2], C2×D28, C2×D28, Q8×D7 [×4], Q8×D7 [×2], Q82D7 [×4], Q82D7 [×2], Q8×C14 [×2], C2×C8⋊D7, C2×C56⋊C2, Q16⋊D7 [×8], C2×Q8⋊D7, C2×C7⋊Q16, C14×Q16, C2×Q8×D7, C2×Q82D7, C2×Q16⋊D7

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C8.C22 [×2], C22×D4, C22×D7 [×7], C2×C8.C22, D4×D7 [×2], C23×D7, Q16⋊D7 [×2], C2×D4×D7, C2×Q16⋊D7

Generators and relations
 G = < a,b,c,d,e | a2=b8=d7=e2=1, c2=b4, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe=b5, cd=dc, ece=b4c, ede=d-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 196)(2 197)(3 198)(4 199)(5 200)(6 193)(7 194)(8 195)(9 180)(10 181)(11 182)(12 183)(13 184)(14 177)(15 178)(16 179)(17 174)(18 175)(19 176)(20 169)(21 170)(22 171)(23 172)(24 173)(25 221)(26 222)(27 223)(28 224)(29 217)(30 218)(31 219)(32 220)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 113)(41 144)(42 137)(43 138)(44 139)(45 140)(46 141)(47 142)(48 143)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 129)(57 216)(58 209)(59 210)(60 211)(61 212)(62 213)(63 214)(64 215)(65 202)(66 203)(67 204)(68 205)(69 206)(70 207)(71 208)(72 201)(73 127)(74 128)(75 121)(76 122)(77 123)(78 124)(79 125)(80 126)(81 188)(82 189)(83 190)(84 191)(85 192)(86 185)(87 186)(88 187)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 145)(96 146)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 153)(104 154)(105 163)(106 164)(107 165)(108 166)(109 167)(110 168)(111 161)(112 162)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 219 5 223)(2 218 6 222)(3 217 7 221)(4 224 8 220)(9 67 13 71)(10 66 14 70)(11 65 15 69)(12 72 16 68)(17 59 21 63)(18 58 22 62)(19 57 23 61)(20 64 24 60)(25 198 29 194)(26 197 30 193)(27 196 31 200)(28 195 32 199)(33 96 37 92)(34 95 38 91)(35 94 39 90)(36 93 40 89)(41 102 45 98)(42 101 46 97)(43 100 47 104)(44 99 48 103)(49 108 53 112)(50 107 54 111)(51 106 55 110)(52 105 56 109)(73 83 77 87)(74 82 78 86)(75 81 79 85)(76 88 80 84)(113 147 117 151)(114 146 118 150)(115 145 119 149)(116 152 120 148)(121 188 125 192)(122 187 126 191)(123 186 127 190)(124 185 128 189)(129 167 133 163)(130 166 134 162)(131 165 135 161)(132 164 136 168)(137 159 141 155)(138 158 142 154)(139 157 143 153)(140 156 144 160)(169 215 173 211)(170 214 174 210)(171 213 175 209)(172 212 176 216)(177 207 181 203)(178 206 182 202)(179 205 183 201)(180 204 184 208)
(1 47 50 177 174 151 189)(2 48 51 178 175 152 190)(3 41 52 179 176 145 191)(4 42 53 180 169 146 192)(5 43 54 181 170 147 185)(6 44 55 182 171 148 186)(7 45 56 183 172 149 187)(8 46 49 184 173 150 188)(9 20 96 85 199 137 134)(10 21 89 86 200 138 135)(11 22 90 87 193 139 136)(12 23 91 88 194 140 129)(13 24 92 81 195 141 130)(14 17 93 82 196 142 131)(15 18 94 83 197 143 132)(16 19 95 84 198 144 133)(25 156 167 72 61 34 80)(26 157 168 65 62 35 73)(27 158 161 66 63 36 74)(28 159 162 67 64 37 75)(29 160 163 68 57 38 76)(30 153 164 69 58 39 77)(31 154 165 70 59 40 78)(32 155 166 71 60 33 79)(97 108 208 211 114 125 220)(98 109 201 212 115 126 221)(99 110 202 213 116 127 222)(100 111 203 214 117 128 223)(101 112 204 215 118 121 224)(102 105 205 216 119 122 217)(103 106 206 209 120 123 218)(104 107 207 210 113 124 219)
(1 189)(2 186)(3 191)(4 188)(5 185)(6 190)(7 187)(8 192)(9 13)(11 15)(17 131)(18 136)(19 133)(20 130)(21 135)(22 132)(23 129)(24 134)(25 76)(26 73)(27 78)(28 75)(29 80)(30 77)(31 74)(32 79)(33 155)(34 160)(35 157)(36 154)(37 159)(38 156)(39 153)(40 158)(41 145)(42 150)(43 147)(44 152)(45 149)(46 146)(47 151)(48 148)(49 169)(50 174)(51 171)(52 176)(53 173)(54 170)(55 175)(56 172)(57 167)(58 164)(59 161)(60 166)(61 163)(62 168)(63 165)(64 162)(66 70)(68 72)(81 199)(82 196)(83 193)(84 198)(85 195)(86 200)(87 197)(88 194)(89 138)(90 143)(91 140)(92 137)(93 142)(94 139)(95 144)(96 141)(97 114)(98 119)(99 116)(100 113)(101 118)(102 115)(103 120)(104 117)(105 212)(106 209)(107 214)(108 211)(109 216)(110 213)(111 210)(112 215)(121 224)(122 221)(123 218)(124 223)(125 220)(126 217)(127 222)(128 219)(178 182)(180 184)(201 205)(203 207)

G:=sub<Sym(224)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,180)(10,181)(11,182)(12,183)(13,184)(14,177)(15,178)(16,179)(17,174)(18,175)(19,176)(20,169)(21,170)(22,171)(23,172)(24,173)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,144)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,129)(57,216)(58,209)(59,210)(60,211)(61,212)(62,213)(63,214)(64,215)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,201)(73,127)(74,128)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126)(81,188)(82,189)(83,190)(84,191)(85,192)(86,185)(87,186)(88,187)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,145)(96,146)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,219,5,223)(2,218,6,222)(3,217,7,221)(4,224,8,220)(9,67,13,71)(10,66,14,70)(11,65,15,69)(12,72,16,68)(17,59,21,63)(18,58,22,62)(19,57,23,61)(20,64,24,60)(25,198,29,194)(26,197,30,193)(27,196,31,200)(28,195,32,199)(33,96,37,92)(34,95,38,91)(35,94,39,90)(36,93,40,89)(41,102,45,98)(42,101,46,97)(43,100,47,104)(44,99,48,103)(49,108,53,112)(50,107,54,111)(51,106,55,110)(52,105,56,109)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84)(113,147,117,151)(114,146,118,150)(115,145,119,149)(116,152,120,148)(121,188,125,192)(122,187,126,191)(123,186,127,190)(124,185,128,189)(129,167,133,163)(130,166,134,162)(131,165,135,161)(132,164,136,168)(137,159,141,155)(138,158,142,154)(139,157,143,153)(140,156,144,160)(169,215,173,211)(170,214,174,210)(171,213,175,209)(172,212,176,216)(177,207,181,203)(178,206,182,202)(179,205,183,201)(180,204,184,208), (1,47,50,177,174,151,189)(2,48,51,178,175,152,190)(3,41,52,179,176,145,191)(4,42,53,180,169,146,192)(5,43,54,181,170,147,185)(6,44,55,182,171,148,186)(7,45,56,183,172,149,187)(8,46,49,184,173,150,188)(9,20,96,85,199,137,134)(10,21,89,86,200,138,135)(11,22,90,87,193,139,136)(12,23,91,88,194,140,129)(13,24,92,81,195,141,130)(14,17,93,82,196,142,131)(15,18,94,83,197,143,132)(16,19,95,84,198,144,133)(25,156,167,72,61,34,80)(26,157,168,65,62,35,73)(27,158,161,66,63,36,74)(28,159,162,67,64,37,75)(29,160,163,68,57,38,76)(30,153,164,69,58,39,77)(31,154,165,70,59,40,78)(32,155,166,71,60,33,79)(97,108,208,211,114,125,220)(98,109,201,212,115,126,221)(99,110,202,213,116,127,222)(100,111,203,214,117,128,223)(101,112,204,215,118,121,224)(102,105,205,216,119,122,217)(103,106,206,209,120,123,218)(104,107,207,210,113,124,219), (1,189)(2,186)(3,191)(4,188)(5,185)(6,190)(7,187)(8,192)(9,13)(11,15)(17,131)(18,136)(19,133)(20,130)(21,135)(22,132)(23,129)(24,134)(25,76)(26,73)(27,78)(28,75)(29,80)(30,77)(31,74)(32,79)(33,155)(34,160)(35,157)(36,154)(37,159)(38,156)(39,153)(40,158)(41,145)(42,150)(43,147)(44,152)(45,149)(46,146)(47,151)(48,148)(49,169)(50,174)(51,171)(52,176)(53,173)(54,170)(55,175)(56,172)(57,167)(58,164)(59,161)(60,166)(61,163)(62,168)(63,165)(64,162)(66,70)(68,72)(81,199)(82,196)(83,193)(84,198)(85,195)(86,200)(87,197)(88,194)(89,138)(90,143)(91,140)(92,137)(93,142)(94,139)(95,144)(96,141)(97,114)(98,119)(99,116)(100,113)(101,118)(102,115)(103,120)(104,117)(105,212)(106,209)(107,214)(108,211)(109,216)(110,213)(111,210)(112,215)(121,224)(122,221)(123,218)(124,223)(125,220)(126,217)(127,222)(128,219)(178,182)(180,184)(201,205)(203,207)>;

G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,180)(10,181)(11,182)(12,183)(13,184)(14,177)(15,178)(16,179)(17,174)(18,175)(19,176)(20,169)(21,170)(22,171)(23,172)(24,173)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,144)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,129)(57,216)(58,209)(59,210)(60,211)(61,212)(62,213)(63,214)(64,215)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,201)(73,127)(74,128)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126)(81,188)(82,189)(83,190)(84,191)(85,192)(86,185)(87,186)(88,187)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,145)(96,146)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,219,5,223)(2,218,6,222)(3,217,7,221)(4,224,8,220)(9,67,13,71)(10,66,14,70)(11,65,15,69)(12,72,16,68)(17,59,21,63)(18,58,22,62)(19,57,23,61)(20,64,24,60)(25,198,29,194)(26,197,30,193)(27,196,31,200)(28,195,32,199)(33,96,37,92)(34,95,38,91)(35,94,39,90)(36,93,40,89)(41,102,45,98)(42,101,46,97)(43,100,47,104)(44,99,48,103)(49,108,53,112)(50,107,54,111)(51,106,55,110)(52,105,56,109)(73,83,77,87)(74,82,78,86)(75,81,79,85)(76,88,80,84)(113,147,117,151)(114,146,118,150)(115,145,119,149)(116,152,120,148)(121,188,125,192)(122,187,126,191)(123,186,127,190)(124,185,128,189)(129,167,133,163)(130,166,134,162)(131,165,135,161)(132,164,136,168)(137,159,141,155)(138,158,142,154)(139,157,143,153)(140,156,144,160)(169,215,173,211)(170,214,174,210)(171,213,175,209)(172,212,176,216)(177,207,181,203)(178,206,182,202)(179,205,183,201)(180,204,184,208), (1,47,50,177,174,151,189)(2,48,51,178,175,152,190)(3,41,52,179,176,145,191)(4,42,53,180,169,146,192)(5,43,54,181,170,147,185)(6,44,55,182,171,148,186)(7,45,56,183,172,149,187)(8,46,49,184,173,150,188)(9,20,96,85,199,137,134)(10,21,89,86,200,138,135)(11,22,90,87,193,139,136)(12,23,91,88,194,140,129)(13,24,92,81,195,141,130)(14,17,93,82,196,142,131)(15,18,94,83,197,143,132)(16,19,95,84,198,144,133)(25,156,167,72,61,34,80)(26,157,168,65,62,35,73)(27,158,161,66,63,36,74)(28,159,162,67,64,37,75)(29,160,163,68,57,38,76)(30,153,164,69,58,39,77)(31,154,165,70,59,40,78)(32,155,166,71,60,33,79)(97,108,208,211,114,125,220)(98,109,201,212,115,126,221)(99,110,202,213,116,127,222)(100,111,203,214,117,128,223)(101,112,204,215,118,121,224)(102,105,205,216,119,122,217)(103,106,206,209,120,123,218)(104,107,207,210,113,124,219), (1,189)(2,186)(3,191)(4,188)(5,185)(6,190)(7,187)(8,192)(9,13)(11,15)(17,131)(18,136)(19,133)(20,130)(21,135)(22,132)(23,129)(24,134)(25,76)(26,73)(27,78)(28,75)(29,80)(30,77)(31,74)(32,79)(33,155)(34,160)(35,157)(36,154)(37,159)(38,156)(39,153)(40,158)(41,145)(42,150)(43,147)(44,152)(45,149)(46,146)(47,151)(48,148)(49,169)(50,174)(51,171)(52,176)(53,173)(54,170)(55,175)(56,172)(57,167)(58,164)(59,161)(60,166)(61,163)(62,168)(63,165)(64,162)(66,70)(68,72)(81,199)(82,196)(83,193)(84,198)(85,195)(86,200)(87,197)(88,194)(89,138)(90,143)(91,140)(92,137)(93,142)(94,139)(95,144)(96,141)(97,114)(98,119)(99,116)(100,113)(101,118)(102,115)(103,120)(104,117)(105,212)(106,209)(107,214)(108,211)(109,216)(110,213)(111,210)(112,215)(121,224)(122,221)(123,218)(124,223)(125,220)(126,217)(127,222)(128,219)(178,182)(180,184)(201,205)(203,207) );

G=PermutationGroup([(1,196),(2,197),(3,198),(4,199),(5,200),(6,193),(7,194),(8,195),(9,180),(10,181),(11,182),(12,183),(13,184),(14,177),(15,178),(16,179),(17,174),(18,175),(19,176),(20,169),(21,170),(22,171),(23,172),(24,173),(25,221),(26,222),(27,223),(28,224),(29,217),(30,218),(31,219),(32,220),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,113),(41,144),(42,137),(43,138),(44,139),(45,140),(46,141),(47,142),(48,143),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,129),(57,216),(58,209),(59,210),(60,211),(61,212),(62,213),(63,214),(64,215),(65,202),(66,203),(67,204),(68,205),(69,206),(70,207),(71,208),(72,201),(73,127),(74,128),(75,121),(76,122),(77,123),(78,124),(79,125),(80,126),(81,188),(82,189),(83,190),(84,191),(85,192),(86,185),(87,186),(88,187),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,145),(96,146),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,153),(104,154),(105,163),(106,164),(107,165),(108,166),(109,167),(110,168),(111,161),(112,162)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,219,5,223),(2,218,6,222),(3,217,7,221),(4,224,8,220),(9,67,13,71),(10,66,14,70),(11,65,15,69),(12,72,16,68),(17,59,21,63),(18,58,22,62),(19,57,23,61),(20,64,24,60),(25,198,29,194),(26,197,30,193),(27,196,31,200),(28,195,32,199),(33,96,37,92),(34,95,38,91),(35,94,39,90),(36,93,40,89),(41,102,45,98),(42,101,46,97),(43,100,47,104),(44,99,48,103),(49,108,53,112),(50,107,54,111),(51,106,55,110),(52,105,56,109),(73,83,77,87),(74,82,78,86),(75,81,79,85),(76,88,80,84),(113,147,117,151),(114,146,118,150),(115,145,119,149),(116,152,120,148),(121,188,125,192),(122,187,126,191),(123,186,127,190),(124,185,128,189),(129,167,133,163),(130,166,134,162),(131,165,135,161),(132,164,136,168),(137,159,141,155),(138,158,142,154),(139,157,143,153),(140,156,144,160),(169,215,173,211),(170,214,174,210),(171,213,175,209),(172,212,176,216),(177,207,181,203),(178,206,182,202),(179,205,183,201),(180,204,184,208)], [(1,47,50,177,174,151,189),(2,48,51,178,175,152,190),(3,41,52,179,176,145,191),(4,42,53,180,169,146,192),(5,43,54,181,170,147,185),(6,44,55,182,171,148,186),(7,45,56,183,172,149,187),(8,46,49,184,173,150,188),(9,20,96,85,199,137,134),(10,21,89,86,200,138,135),(11,22,90,87,193,139,136),(12,23,91,88,194,140,129),(13,24,92,81,195,141,130),(14,17,93,82,196,142,131),(15,18,94,83,197,143,132),(16,19,95,84,198,144,133),(25,156,167,72,61,34,80),(26,157,168,65,62,35,73),(27,158,161,66,63,36,74),(28,159,162,67,64,37,75),(29,160,163,68,57,38,76),(30,153,164,69,58,39,77),(31,154,165,70,59,40,78),(32,155,166,71,60,33,79),(97,108,208,211,114,125,220),(98,109,201,212,115,126,221),(99,110,202,213,116,127,222),(100,111,203,214,117,128,223),(101,112,204,215,118,121,224),(102,105,205,216,119,122,217),(103,106,206,209,120,123,218),(104,107,207,210,113,124,219)], [(1,189),(2,186),(3,191),(4,188),(5,185),(6,190),(7,187),(8,192),(9,13),(11,15),(17,131),(18,136),(19,133),(20,130),(21,135),(22,132),(23,129),(24,134),(25,76),(26,73),(27,78),(28,75),(29,80),(30,77),(31,74),(32,79),(33,155),(34,160),(35,157),(36,154),(37,159),(38,156),(39,153),(40,158),(41,145),(42,150),(43,147),(44,152),(45,149),(46,146),(47,151),(48,148),(49,169),(50,174),(51,171),(52,176),(53,173),(54,170),(55,175),(56,172),(57,167),(58,164),(59,161),(60,166),(61,163),(62,168),(63,165),(64,162),(66,70),(68,72),(81,199),(82,196),(83,193),(84,198),(85,195),(86,200),(87,197),(88,194),(89,138),(90,143),(91,140),(92,137),(93,142),(94,139),(95,144),(96,141),(97,114),(98,119),(99,116),(100,113),(101,118),(102,115),(103,120),(104,117),(105,212),(106,209),(107,214),(108,211),(109,216),(110,213),(111,210),(112,215),(121,224),(122,221),(123,218),(124,223),(125,220),(126,217),(127,222),(128,219),(178,182),(180,184),(201,205),(203,207)])

Matrix representation G ⊆ GL8(𝔽113)

1120000000
0112000000
0011200000
0001120000
00001000
00000100
00000010
00000001
,
4411027140000
663951030000
4306630000
577010530000
000048010933
000033109804
0000480480
00003310933109
,
956684310000
9416571070000
721184470000
50516310000
000024090105
000073111823
00009010511173
0000823402
,
103112000000
234000000
001041120000
0072330000
00007911200
00001000
00000079112
00000010
,
102103000000
1211000000
250331030000
558841800000
000034100
0000887900
000000341
0000008879

G:=sub<GL(8,GF(113))| [112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[44,6,4,57,0,0,0,0,110,63,30,70,0,0,0,0,27,95,66,10,0,0,0,0,14,103,3,53,0,0,0,0,0,0,0,0,4,33,4,33,0,0,0,0,80,109,80,109,0,0,0,0,109,80,4,33,0,0,0,0,33,4,80,109],[95,94,72,50,0,0,0,0,66,16,11,51,0,0,0,0,84,57,84,6,0,0,0,0,31,107,47,31,0,0,0,0,0,0,0,0,2,73,90,8,0,0,0,0,40,111,105,23,0,0,0,0,90,8,111,40,0,0,0,0,105,23,73,2],[103,2,0,0,0,0,0,0,112,34,0,0,0,0,0,0,0,0,104,72,0,0,0,0,0,0,112,33,0,0,0,0,0,0,0,0,79,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,79,1,0,0,0,0,0,0,112,0],[102,12,25,55,0,0,0,0,103,11,0,88,0,0,0,0,0,0,33,41,0,0,0,0,0,0,103,80,0,0,0,0,0,0,0,0,34,88,0,0,0,0,0,0,1,79,0,0,0,0,0,0,0,0,34,88,0,0,0,0,0,0,1,79] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D14A···14I28A···28F28G···28R56A···56L
order122222224444444444777888814···1428···2828···2856···56
size111114142828224444141428282224428282···24···48···84···4

64 irreducible representations

dim11111111122222224444
type++++++++++++++++-++
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14C8.C22D4×D7D4×D7Q16⋊D7
kernelC2×Q16⋊D7C2×C8⋊D7C2×C56⋊C2Q16⋊D7C2×Q8⋊D7C2×C7⋊Q16C14×Q16C2×Q8×D7C2×Q82D7C4×D7C2×Dic7C22×D7C2×Q16C2×C8Q16C2×Q8C14C4C22C2
# reps1118111112113312623312

In GAP, Magma, Sage, TeX

C_2\times Q_{16}\rtimes D_7
% in TeX

G:=Group("C2xQ16:D7");
// GroupNames label

G:=SmallGroup(448,1217);
// by ID

G=gap.SmallGroup(448,1217);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,1123,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=d^7=e^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e=b^5,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽