Copied to
clipboard

?

G = C20.1S4order 480 = 25·3·5

1st non-split extension by C20 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C20.1S4, C22⋊Dic30, A42Dic10, C23.1D30, C4.1(C5⋊S4), C52(A4⋊Q8), (C5×A4)⋊2Q8, (C4×A4).1D5, C10.16(C2×S4), (A4×C20).1C2, (C2×A4).8D10, (C2×C10)⋊3Dic6, A4⋊Dic5.1C2, (C22×C20).2S3, (C22×C4).2D15, (C10×A4).8C22, (C22×C10).13D6, C2.3(C2×C5⋊S4), SmallGroup(480,1024)

Series: Derived Chief Lower central Upper central

C1C22C10×A4 — C20.1S4
C1C22C2×C10C5×A4C10×A4A4⋊Dic5 — C20.1S4

Subgroups: 588 in 84 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2 [×2], C3, C4, C4 [×5], C22, C22 [×2], C5, C6, C2×C4 [×6], Q8 [×2], C23, C10, C10 [×2], Dic3 [×2], C12, A4, C15, C22⋊C4 [×2], C4⋊C4 [×3], C22×C4, C2×Q8, Dic5 [×4], C20, C20, C2×C10, C2×C10 [×2], Dic6, C2×A4, C30, C22⋊Q8, Dic10 [×2], C2×Dic5 [×4], C2×C20 [×2], C22×C10, A4⋊C4 [×2], C4×A4, Dic15 [×2], C60, C5×A4, C10.D4 [×2], C4⋊Dic5, C23.D5 [×2], C2×Dic10, C22×C20, A4⋊Q8, Dic30, C10×A4, C20.48D4, A4⋊Dic5 [×2], A4×C20, C20.1S4

Quotients:
C1, C2 [×3], C22, S3, Q8, D5, D6, D10, Dic6, S4, D15, Dic10, C2×S4, D30, A4⋊Q8, Dic30, C5⋊S4, C2×C5⋊S4, C20.1S4

Generators and relations
 G = < a,b,c,d,e | a20=b2=c2=d3=1, e2=a10, ab=ba, ac=ca, ad=da, eae-1=a-1, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)
(1 103 48)(2 104 49)(3 105 50)(4 106 51)(5 107 52)(6 108 53)(7 109 54)(8 110 55)(9 111 56)(10 112 57)(11 113 58)(12 114 59)(13 115 60)(14 116 41)(15 117 42)(16 118 43)(17 119 44)(18 120 45)(19 101 46)(20 102 47)(21 71 86)(22 72 87)(23 73 88)(24 74 89)(25 75 90)(26 76 91)(27 77 92)(28 78 93)(29 79 94)(30 80 95)(31 61 96)(32 62 97)(33 63 98)(34 64 99)(35 65 100)(36 66 81)(37 67 82)(38 68 83)(39 69 84)(40 70 85)
(1 33 11 23)(2 32 12 22)(3 31 13 21)(4 30 14 40)(5 29 15 39)(6 28 16 38)(7 27 17 37)(8 26 18 36)(9 25 19 35)(10 24 20 34)(41 70 51 80)(42 69 52 79)(43 68 53 78)(44 67 54 77)(45 66 55 76)(46 65 56 75)(47 64 57 74)(48 63 58 73)(49 62 59 72)(50 61 60 71)(81 110 91 120)(82 109 92 119)(83 108 93 118)(84 107 94 117)(85 106 95 116)(86 105 96 115)(87 104 97 114)(88 103 98 113)(89 102 99 112)(90 101 100 111)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,103,48)(2,104,49)(3,105,50)(4,106,51)(5,107,52)(6,108,53)(7,109,54)(8,110,55)(9,111,56)(10,112,57)(11,113,58)(12,114,59)(13,115,60)(14,116,41)(15,117,42)(16,118,43)(17,119,44)(18,120,45)(19,101,46)(20,102,47)(21,71,86)(22,72,87)(23,73,88)(24,74,89)(25,75,90)(26,76,91)(27,77,92)(28,78,93)(29,79,94)(30,80,95)(31,61,96)(32,62,97)(33,63,98)(34,64,99)(35,65,100)(36,66,81)(37,67,82)(38,68,83)(39,69,84)(40,70,85), (1,33,11,23)(2,32,12,22)(3,31,13,21)(4,30,14,40)(5,29,15,39)(6,28,16,38)(7,27,17,37)(8,26,18,36)(9,25,19,35)(10,24,20,34)(41,70,51,80)(42,69,52,79)(43,68,53,78)(44,67,54,77)(45,66,55,76)(46,65,56,75)(47,64,57,74)(48,63,58,73)(49,62,59,72)(50,61,60,71)(81,110,91,120)(82,109,92,119)(83,108,93,118)(84,107,94,117)(85,106,95,116)(86,105,96,115)(87,104,97,114)(88,103,98,113)(89,102,99,112)(90,101,100,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,103,48)(2,104,49)(3,105,50)(4,106,51)(5,107,52)(6,108,53)(7,109,54)(8,110,55)(9,111,56)(10,112,57)(11,113,58)(12,114,59)(13,115,60)(14,116,41)(15,117,42)(16,118,43)(17,119,44)(18,120,45)(19,101,46)(20,102,47)(21,71,86)(22,72,87)(23,73,88)(24,74,89)(25,75,90)(26,76,91)(27,77,92)(28,78,93)(29,79,94)(30,80,95)(31,61,96)(32,62,97)(33,63,98)(34,64,99)(35,65,100)(36,66,81)(37,67,82)(38,68,83)(39,69,84)(40,70,85), (1,33,11,23)(2,32,12,22)(3,31,13,21)(4,30,14,40)(5,29,15,39)(6,28,16,38)(7,27,17,37)(8,26,18,36)(9,25,19,35)(10,24,20,34)(41,70,51,80)(42,69,52,79)(43,68,53,78)(44,67,54,77)(45,66,55,76)(46,65,56,75)(47,64,57,74)(48,63,58,73)(49,62,59,72)(50,61,60,71)(81,110,91,120)(82,109,92,119)(83,108,93,118)(84,107,94,117)(85,106,95,116)(86,105,96,115)(87,104,97,114)(88,103,98,113)(89,102,99,112)(90,101,100,111) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)], [(1,103,48),(2,104,49),(3,105,50),(4,106,51),(5,107,52),(6,108,53),(7,109,54),(8,110,55),(9,111,56),(10,112,57),(11,113,58),(12,114,59),(13,115,60),(14,116,41),(15,117,42),(16,118,43),(17,119,44),(18,120,45),(19,101,46),(20,102,47),(21,71,86),(22,72,87),(23,73,88),(24,74,89),(25,75,90),(26,76,91),(27,77,92),(28,78,93),(29,79,94),(30,80,95),(31,61,96),(32,62,97),(33,63,98),(34,64,99),(35,65,100),(36,66,81),(37,67,82),(38,68,83),(39,69,84),(40,70,85)], [(1,33,11,23),(2,32,12,22),(3,31,13,21),(4,30,14,40),(5,29,15,39),(6,28,16,38),(7,27,17,37),(8,26,18,36),(9,25,19,35),(10,24,20,34),(41,70,51,80),(42,69,52,79),(43,68,53,78),(44,67,54,77),(45,66,55,76),(46,65,56,75),(47,64,57,74),(48,63,58,73),(49,62,59,72),(50,61,60,71),(81,110,91,120),(82,109,92,119),(83,108,93,118),(84,107,94,117),(85,106,95,116),(86,105,96,115),(87,104,97,114),(88,103,98,113),(89,102,99,112),(90,101,100,111)])

Matrix representation G ⊆ GL5(𝔽61)

3213000
938000
00100
00010
00001
,
10000
01000
006000
006001
006010
,
10000
01000
000160
001060
000060
,
10000
01000
00010
00001
00100
,
4751000
3814000
000600
006000
000060

G:=sub<GL(5,GF(61))| [32,9,0,0,0,13,38,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[47,38,0,0,0,51,14,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,60] >;

46 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F5A5B 6 10A10B10C10D10E10F12A12B15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D60A···60H
order1222344444455610101010101012121515151520202020202020203030303060···60
size1133826606060602282266668888882222666688888···8

46 irreducible representations

dim1112222222222336666
type++++-+++-+-+-++-++-
imageC1C2C2S3Q8D5D6D10Dic6D15Dic10D30Dic30S4C2×S4A4⋊Q8C5⋊S4C2×C5⋊S4C20.1S4
kernelC20.1S4A4⋊Dic5A4×C20C22×C20C5×A4C4×A4C22×C10C2×A4C2×C10C22×C4A4C23C22C20C10C5C4C2C1
# reps1211121224448221224

In GAP, Magma, Sage, TeX

C_{20}._1S_4
% in TeX

G:=Group("C20.1S4");
// GroupNames label

G:=SmallGroup(480,1024);
// by ID

G=gap.SmallGroup(480,1024);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,28,85,36,451,3364,10085,1286,5886,2232]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=b^2=c^2=d^3=1,e^2=a^10,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽