non-abelian, soluble, monomial
Aliases: C24⋊2D15, C23.5D30, (C2×C10)⋊4S4, (C5×A4)⋊7D4, C22⋊2(C5⋊S4), A4⋊3(C5⋊D4), C5⋊3(A4⋊D4), C10.26(C2×S4), A4⋊Dic5⋊1C2, (C23×C10)⋊4S3, C22⋊(C15⋊7D4), (C22×A4)⋊2D5, (C2×A4).12D10, (C22×C10).17D6, (C10×A4).12C22, (C2×C5⋊S4)⋊2C2, (A4×C2×C10)⋊2C2, C2.11(C2×C5⋊S4), (C2×C10)⋊4(C3⋊D4), SmallGroup(480,1034)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊2D15
G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, faf=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, ece-1=fdf=cd=dc, cf=fc, ede-1=c, fef=e-1 >
Subgroups: 1036 in 124 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2 [×5], C3, C4 [×3], C22 [×2], C22 [×11], C5, S3, C6 [×2], C2×C4 [×3], D4 [×6], C23, C23 [×5], D5, C10, C10 [×4], Dic3, A4, D6, C2×C6, C15, C22⋊C4 [×3], C2×D4 [×3], C24, Dic5 [×3], D10 [×3], C2×C10 [×2], C2×C10 [×8], C3⋊D4, S4, C2×A4, C2×A4, D15, C30 [×2], C22≀C2, C2×Dic5 [×3], C5⋊D4 [×6], C22×D5, C22×C10, C22×C10 [×4], A4⋊C4, C2×S4, C22×A4, Dic15, C5×A4, D30, C2×C30, C23.D5 [×3], C2×C5⋊D4 [×3], C23×C10, A4⋊D4, C15⋊7D4, C5⋊S4, C10×A4, C10×A4, C24⋊2D5, A4⋊Dic5, C2×C5⋊S4, A4×C2×C10, C24⋊2D15
Quotients: C1, C2 [×3], C22, S3, D4, D5, D6, D10, C3⋊D4, S4, D15, C5⋊D4, C2×S4, D30, A4⋊D4, C15⋊7D4, C5⋊S4, C2×C5⋊S4, C24⋊2D15
(16 41)(17 42)(18 43)(19 44)(20 45)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 46)(14 47)(15 48)(16 41)(17 42)(18 43)(19 44)(20 45)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(2 50)(3 51)(5 53)(6 54)(8 56)(9 57)(11 59)(12 60)(14 47)(15 48)(16 41)(17 42)(19 44)(20 45)(22 32)(23 33)(25 35)(26 36)(28 38)(29 39)
(1 49)(3 51)(4 52)(6 54)(7 55)(9 57)(10 58)(12 60)(13 46)(15 48)(17 42)(18 43)(20 45)(21 31)(23 33)(24 34)(26 36)(27 37)(29 39)(30 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 60)(17 59)(18 58)(19 57)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)(29 47)(30 46)
G:=sub<Sym(60)| (16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,46)(14,47)(15,48)(16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (2,50)(3,51)(5,53)(6,54)(8,56)(9,57)(11,59)(12,60)(14,47)(15,48)(16,41)(17,42)(19,44)(20,45)(22,32)(23,33)(25,35)(26,36)(28,38)(29,39), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,46)(15,48)(17,42)(18,43)(20,45)(21,31)(23,33)(24,34)(26,36)(27,37)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)>;
G:=Group( (16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,46)(14,47)(15,48)(16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (2,50)(3,51)(5,53)(6,54)(8,56)(9,57)(11,59)(12,60)(14,47)(15,48)(16,41)(17,42)(19,44)(20,45)(22,32)(23,33)(25,35)(26,36)(28,38)(29,39), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,46)(15,48)(17,42)(18,43)(20,45)(21,31)(23,33)(24,34)(26,36)(27,37)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46) );
G=PermutationGroup([(16,41),(17,42),(18,43),(19,44),(20,45),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,46),(14,47),(15,48),(16,41),(17,42),(18,43),(19,44),(20,45),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(2,50),(3,51),(5,53),(6,54),(8,56),(9,57),(11,59),(12,60),(14,47),(15,48),(16,41),(17,42),(19,44),(20,45),(22,32),(23,33),(25,35),(26,36),(28,38),(29,39)], [(1,49),(3,51),(4,52),(6,54),(7,55),(9,57),(10,58),(12,60),(13,46),(15,48),(17,42),(18,43),(20,45),(21,31),(23,33),(24,34),(26,36),(27,37),(29,39),(30,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,60),(17,59),(18,58),(19,57),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48),(29,47),(30,46)])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 10G | ··· | 10N | 15A | 15B | 15C | 15D | 30A | ··· | 30L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 15 | 15 | 15 | 15 | 30 | ··· | 30 |
size | 1 | 1 | 2 | 3 | 3 | 6 | 60 | 8 | 60 | 60 | 60 | 2 | 2 | 8 | 8 | 8 | 2 | ··· | 2 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D10 | C3⋊D4 | D15 | C5⋊D4 | D30 | C15⋊7D4 | S4 | C2×S4 | A4⋊D4 | C5⋊S4 | C2×C5⋊S4 | C24⋊2D15 |
kernel | C24⋊2D15 | A4⋊Dic5 | C2×C5⋊S4 | A4×C2×C10 | C23×C10 | C5×A4 | C22×A4 | C22×C10 | C2×A4 | C2×C10 | C24 | A4 | C23 | C22 | C2×C10 | C10 | C5 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 2 | 2 | 1 | 2 | 2 | 4 |
Matrix representation of C24⋊2D15 ►in GL5(𝔽61)
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 | 1 |
0 | 0 | 60 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 1 | 60 | 0 |
39 | 19 | 0 | 0 | 0 |
19 | 39 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
22 | 19 | 0 | 0 | 0 |
42 | 39 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(61))| [0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,60,60,60,0,0,1,0,0],[39,19,0,0,0,19,39,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[22,42,0,0,0,19,39,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C24⋊2D15 in GAP, Magma, Sage, TeX
C_2^4\rtimes_2D_{15}
% in TeX
G:=Group("C2^4:2D15");
// GroupNames label
G:=SmallGroup(480,1034);
// by ID
G=gap.SmallGroup(480,1034);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,85,451,3364,10085,1286,5886,2232]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*d*f=c*d=d*c,c*f=f*c,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations