p-group, metabelian, nilpotent (class 4), monomial
Aliases: C16⋊1D4, C23.16D8, (C2×D16)⋊8C2, C16⋊4C4⋊4C2, (C2×C4).36D8, C8⋊7D4⋊33C2, (C2×C8).214D4, C8.102(C2×D4), C2.D16⋊17C2, C8.47(C4○D4), C4.20(C4○D8), (C2×M5(2))⋊1C2, (C2×D8).7C22, C2.21(C8⋊7D4), C4.93(C4⋊D4), C2.D8.8C22, (C2×C16).23C22, (C2×C8).523C23, C22.109(C2×D8), (C22×C4).349D4, C2.12(C16⋊C22), (C22×C8).299C22, (C2×C4).791(C2×D4), SmallGroup(128,950)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊D4
G = < a,b,c | a16=b4=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >
Subgroups: 264 in 85 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, D4⋊C4, C2.D8, C2×C16, M5(2), D16, C4⋊D4, C22×C8, C2×D8, C2.D16, C16⋊4C4, C8⋊7D4, C2×M5(2), C2×D16, C16⋊D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8⋊7D4, C16⋊C22, C16⋊D4
Character table of C16⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 16 | 16 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -√2 | √-2 | √2 | -√-2 | -√2 | √-2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -√2 | -√-2 | √2 | √-2 | -√2 | -√-2 | √-2 | √2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | √2 | √-2 | -√2 | -√-2 | √2 | √-2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | √2 | -√-2 | -√2 | √-2 | √2 | -√-2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 62 48 32)(2 53 33 23)(3 60 34 30)(4 51 35 21)(5 58 36 28)(6 49 37 19)(7 56 38 26)(8 63 39 17)(9 54 40 24)(10 61 41 31)(11 52 42 22)(12 59 43 29)(13 50 44 20)(14 57 45 27)(15 64 46 18)(16 55 47 25)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 64)(24 63)(25 62)(26 61)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 40)(47 48)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,62,48,32)(2,53,33,23)(3,60,34,30)(4,51,35,21)(5,58,36,28)(6,49,37,19)(7,56,38,26)(8,63,39,17)(9,54,40,24)(10,61,41,31)(11,52,42,22)(12,59,43,29)(13,50,44,20)(14,57,45,27)(15,64,46,18)(16,55,47,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,62,48,32)(2,53,33,23)(3,60,34,30)(4,51,35,21)(5,58,36,28)(6,49,37,19)(7,56,38,26)(8,63,39,17)(9,54,40,24)(10,61,41,31)(11,52,42,22)(12,59,43,29)(13,50,44,20)(14,57,45,27)(15,64,46,18)(16,55,47,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,62,48,32),(2,53,33,23),(3,60,34,30),(4,51,35,21),(5,58,36,28),(6,49,37,19),(7,56,38,26),(8,63,39,17),(9,54,40,24),(10,61,41,31),(11,52,42,22),(12,59,43,29),(13,50,44,20),(14,57,45,27),(15,64,46,18),(16,55,47,25)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,64),(24,63),(25,62),(26,61),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,40),(47,48)]])
Matrix representation of C16⋊D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 4 | 10 | 6 |
0 | 0 | 0 | 11 | 16 | 8 |
0 | 0 | 6 | 7 | 11 | 10 |
0 | 0 | 11 | 1 | 7 | 3 |
16 | 2 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 11 | 10 |
0 | 0 | 6 | 2 | 13 | 15 |
0 | 0 | 9 | 4 | 10 | 6 |
0 | 0 | 6 | 7 | 9 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 4 | 10 | 6 |
0 | 0 | 0 | 6 | 1 | 9 |
0 | 0 | 6 | 7 | 11 | 10 |
0 | 0 | 5 | 1 | 0 | 8 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,9,0,6,11,0,0,4,11,7,1,0,0,10,16,11,7,0,0,6,8,10,3],[16,16,0,0,0,0,2,1,0,0,0,0,0,0,6,6,9,6,0,0,7,2,4,7,0,0,11,13,10,9,0,0,10,15,6,16],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,9,0,6,5,0,0,4,6,7,1,0,0,10,1,11,0,0,0,6,9,10,8] >;
C16⋊D4 in GAP, Magma, Sage, TeX
C_{16}\rtimes D_4
% in TeX
G:=Group("C16:D4");
// GroupNames label
G:=SmallGroup(128,950);
// by ID
G=gap.SmallGroup(128,950);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,288,422,723,1123,360,4037,124]);
// Polycyclic
G:=Group<a,b,c|a^16=b^4=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export