Copied to
clipboard

G = C16⋊D4order 128 = 27

1st semidirect product of C16 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C161D4, C23.16D8, (C2×D16)⋊8C2, C164C44C2, (C2×C4).36D8, C87D433C2, (C2×C8).214D4, C8.102(C2×D4), C2.D1617C2, C8.47(C4○D4), C4.20(C4○D8), (C2×M5(2))⋊1C2, (C2×D8).7C22, C2.21(C87D4), C4.93(C4⋊D4), C2.D8.8C22, (C2×C16).23C22, (C2×C8).523C23, C22.109(C2×D8), (C22×C4).349D4, C2.12(C16⋊C22), (C22×C8).299C22, (C2×C4).791(C2×D4), SmallGroup(128,950)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C8 — C16⋊D4
C1C2C4C2×C4C2×C8C22×C8C2×M5(2) — C16⋊D4
C1C2C4C2×C8 — C16⋊D4
C1C22C22×C4C22×C8 — C16⋊D4
C1C2C2C2C2C4C4C2×C8 — C16⋊D4

Generators and relations for C16⋊D4
 G = < a,b,c | a16=b4=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >

Subgroups: 264 in 85 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, D4⋊C4, C2.D8, C2×C16, M5(2), D16, C4⋊D4, C22×C8, C2×D8, C2.D16, C164C4, C87D4, C2×M5(2), C2×D16, C16⋊D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C87D4, C16⋊C22, C16⋊D4

Character table of C16⋊D4

 class 12A2B2C2D2E2F4A4B4C4D4E8A8B8C8D8E8F16A16B16C16D16E16F16G16H
 size 111141616224161622224444444444
ρ111111111111111111111111111    trivial
ρ21111-1-1-111-1111111-1-11-11-11-1-11    linear of order 2
ρ311111-1-1111-1-111111111111111    linear of order 2
ρ41111-11111-1-1-11111-1-11-11-11-1-11    linear of order 2
ρ51111-11-111-11-11111-1-1-11-11-111-1    linear of order 2
ρ611111-111111-1111111-1-1-1-1-1-1-1-1    linear of order 2
ρ71111-1-1111-1-111111-1-1-11-11-111-1    linear of order 2
ρ8111111-1111-11111111-1-1-1-1-1-1-1-1    linear of order 2
ρ92222-20022-200-2-2-2-22200000000    orthogonal lifted from D4
ρ10222220022200-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ112-22-20002-2000-222-200-2020200-2    orthogonal lifted from D4
ρ122-22-20002-2000-222-20020-20-2002    orthogonal lifted from D4
ρ132222-200-2-2200000000-22-222-2-22    orthogonal lifted from D8
ρ142222200-2-2-2000000002222-2-2-2-2    orthogonal lifted from D8
ρ152222200-2-2-200000000-2-2-2-22222    orthogonal lifted from D8
ρ162222-200-2-22000000002-22-2-222-2    orthogonal lifted from D8
ρ172-22-20002-20002-2-22000-2i02i02i-2i0    complex lifted from C4○D4
ρ182-22-20002-20002-2-220002i0-2i0-2i2i0    complex lifted from C4○D4
ρ192-22-2000-220000000-2i2i-2-22--2-2-2--22    complex lifted from C4○D8
ρ202-22-2000-2200000002i-2i-2--22-2-2--2-22    complex lifted from C4○D8
ρ212-22-2000-2200000002i-2i2-2-2--22-2--2-2    complex lifted from C4○D8
ρ222-22-2000-220000000-2i2i2--2-2-22--2-2-2    complex lifted from C4○D8
ρ234-4-4400000000-2222-22220000000000    orthogonal lifted from C16⋊C22
ρ2444-4-400000000-22-2222220000000000    orthogonal lifted from C16⋊C22
ρ254-4-440000000022-2222-220000000000    orthogonal lifted from C16⋊C22
ρ2644-4-4000000002222-22-220000000000    orthogonal lifted from C16⋊C22

Smallest permutation representation of C16⋊D4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 62 48 32)(2 53 33 23)(3 60 34 30)(4 51 35 21)(5 58 36 28)(6 49 37 19)(7 56 38 26)(8 63 39 17)(9 54 40 24)(10 61 41 31)(11 52 42 22)(12 59 43 29)(13 50 44 20)(14 57 45 27)(15 64 46 18)(16 55 47 25)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 64)(24 63)(25 62)(26 61)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 40)(47 48)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,62,48,32)(2,53,33,23)(3,60,34,30)(4,51,35,21)(5,58,36,28)(6,49,37,19)(7,56,38,26)(8,63,39,17)(9,54,40,24)(10,61,41,31)(11,52,42,22)(12,59,43,29)(13,50,44,20)(14,57,45,27)(15,64,46,18)(16,55,47,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,62,48,32)(2,53,33,23)(3,60,34,30)(4,51,35,21)(5,58,36,28)(6,49,37,19)(7,56,38,26)(8,63,39,17)(9,54,40,24)(10,61,41,31)(11,52,42,22)(12,59,43,29)(13,50,44,20)(14,57,45,27)(15,64,46,18)(16,55,47,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,62,48,32),(2,53,33,23),(3,60,34,30),(4,51,35,21),(5,58,36,28),(6,49,37,19),(7,56,38,26),(8,63,39,17),(9,54,40,24),(10,61,41,31),(11,52,42,22),(12,59,43,29),(13,50,44,20),(14,57,45,27),(15,64,46,18),(16,55,47,25)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,64),(24,63),(25,62),(26,61),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,40),(47,48)]])

Matrix representation of C16⋊D4 in GL6(𝔽17)

1600000
0160000
0094106
00011168
00671110
0011173
,
1620000
1610000
00671110
00621315
0094106
0067916
,
1600000
1610000
0094106
000619
00671110
005108

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,9,0,6,11,0,0,4,11,7,1,0,0,10,16,11,7,0,0,6,8,10,3],[16,16,0,0,0,0,2,1,0,0,0,0,0,0,6,6,9,6,0,0,7,2,4,7,0,0,11,13,10,9,0,0,10,15,6,16],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,9,0,6,5,0,0,4,6,7,1,0,0,10,1,11,0,0,0,6,9,10,8] >;

C16⋊D4 in GAP, Magma, Sage, TeX

C_{16}\rtimes D_4
% in TeX

G:=Group("C16:D4");
// GroupNames label

G:=SmallGroup(128,950);
// by ID

G=gap.SmallGroup(128,950);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,288,422,723,1123,360,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^4=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C16⋊D4 in TeX

׿
×
𝔽