p-group, metabelian, nilpotent (class 4), monomial
Aliases: C16.1D4, C23.17D8, (C2×Q32)⋊8C2, C16⋊4C4⋊5C2, (C2×C4).37D8, (C2×C8).215D4, C8.103(C2×D4), C8.48(C4○D4), C4.21(C4○D8), C2.Q32⋊17C2, C4.94(C4⋊D4), C2.22(C8⋊7D4), C2.D8.9C22, (C2×C16).24C22, (C2×C8).524C23, C22.110(C2×D8), (C22×C4).350D4, (C2×M5(2)).3C2, (C2×Q16).8C22, C8.18D4.10C2, C2.12(Q32⋊C2), (C22×C8).300C22, (C2×C4).792(C2×D4), SmallGroup(128,951)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16.D4
G = < a,b,c | a16=b4=1, c2=a8, bab-1=a7, cac-1=a-1, cbc-1=a8b-1 >
Subgroups: 168 in 75 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, Q8⋊C4, C2.D8, C2×C16, M5(2), Q32, C22⋊Q8, C22×C8, C2×Q16, C2.Q32, C16⋊4C4, C8.18D4, C2×M5(2), C2×Q32, C16.D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8⋊7D4, Q32⋊C2, C16.D4
Character table of C16.D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 4 | 16 | 16 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | √2 | -√-2 | -√2 | √-2 | √2 | -√-2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | √2 | √-2 | -√2 | -√-2 | √2 | √-2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -√2 | -√-2 | √2 | √-2 | -√2 | -√-2 | √-2 | √2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -√2 | √-2 | √2 | -√-2 | -√2 | √-2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 18 39 63)(2 25 40 54)(3 32 41 61)(4 23 42 52)(5 30 43 59)(6 21 44 50)(7 28 45 57)(8 19 46 64)(9 26 47 55)(10 17 48 62)(11 24 33 53)(12 31 34 60)(13 22 35 51)(14 29 36 58)(15 20 37 49)(16 27 38 56)
(1 55 9 63)(2 54 10 62)(3 53 11 61)(4 52 12 60)(5 51 13 59)(6 50 14 58)(7 49 15 57)(8 64 16 56)(17 40 25 48)(18 39 26 47)(19 38 27 46)(20 37 28 45)(21 36 29 44)(22 35 30 43)(23 34 31 42)(24 33 32 41)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,18,39,63)(2,25,40,54)(3,32,41,61)(4,23,42,52)(5,30,43,59)(6,21,44,50)(7,28,45,57)(8,19,46,64)(9,26,47,55)(10,17,48,62)(11,24,33,53)(12,31,34,60)(13,22,35,51)(14,29,36,58)(15,20,37,49)(16,27,38,56), (1,55,9,63)(2,54,10,62)(3,53,11,61)(4,52,12,60)(5,51,13,59)(6,50,14,58)(7,49,15,57)(8,64,16,56)(17,40,25,48)(18,39,26,47)(19,38,27,46)(20,37,28,45)(21,36,29,44)(22,35,30,43)(23,34,31,42)(24,33,32,41)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,18,39,63)(2,25,40,54)(3,32,41,61)(4,23,42,52)(5,30,43,59)(6,21,44,50)(7,28,45,57)(8,19,46,64)(9,26,47,55)(10,17,48,62)(11,24,33,53)(12,31,34,60)(13,22,35,51)(14,29,36,58)(15,20,37,49)(16,27,38,56), (1,55,9,63)(2,54,10,62)(3,53,11,61)(4,52,12,60)(5,51,13,59)(6,50,14,58)(7,49,15,57)(8,64,16,56)(17,40,25,48)(18,39,26,47)(19,38,27,46)(20,37,28,45)(21,36,29,44)(22,35,30,43)(23,34,31,42)(24,33,32,41) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,18,39,63),(2,25,40,54),(3,32,41,61),(4,23,42,52),(5,30,43,59),(6,21,44,50),(7,28,45,57),(8,19,46,64),(9,26,47,55),(10,17,48,62),(11,24,33,53),(12,31,34,60),(13,22,35,51),(14,29,36,58),(15,20,37,49),(16,27,38,56)], [(1,55,9,63),(2,54,10,62),(3,53,11,61),(4,52,12,60),(5,51,13,59),(6,50,14,58),(7,49,15,57),(8,64,16,56),(17,40,25,48),(18,39,26,47),(19,38,27,46),(20,37,28,45),(21,36,29,44),(22,35,30,43),(23,34,31,42),(24,33,32,41)]])
Matrix representation of C16.D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 12 | 15 | 0 |
0 | 0 | 0 | 3 | 0 | 15 |
0 | 0 | 2 | 5 | 1 | 5 |
0 | 0 | 7 | 6 | 0 | 14 |
7 | 2 | 0 | 0 | 0 | 0 |
9 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 6 | 10 | 7 |
0 | 0 | 12 | 7 | 7 | 7 |
0 | 0 | 16 | 16 | 3 | 13 |
0 | 0 | 12 | 13 | 2 | 2 |
7 | 2 | 0 | 0 | 0 | 0 |
10 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 6 | 10 | 7 |
0 | 0 | 12 | 7 | 7 | 7 |
0 | 0 | 4 | 11 | 3 | 13 |
0 | 0 | 7 | 8 | 2 | 2 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,2,7,0,0,12,3,5,6,0,0,15,0,1,0,0,0,0,15,5,14],[7,9,0,0,0,0,2,10,0,0,0,0,0,0,5,12,16,12,0,0,6,7,16,13,0,0,10,7,3,2,0,0,7,7,13,2],[7,10,0,0,0,0,2,10,0,0,0,0,0,0,5,12,4,7,0,0,6,7,11,8,0,0,10,7,3,2,0,0,7,7,13,2] >;
C16.D4 in GAP, Magma, Sage, TeX
C_{16}.D_4
% in TeX
G:=Group("C16.D4");
// GroupNames label
G:=SmallGroup(128,951);
// by ID
G=gap.SmallGroup(128,951);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,288,422,723,1123,360,4037,124]);
// Polycyclic
G:=Group<a,b,c|a^16=b^4=1,c^2=a^8,b*a*b^-1=a^7,c*a*c^-1=a^-1,c*b*c^-1=a^8*b^-1>;
// generators/relations
Export