Copied to
clipboard

G = C88D8order 128 = 27

2nd semidirect product of C8 and D8 acting via D8/D4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C88D8, D41SD16, C42.216C23, C82C82C2, (C8×D4)⋊28C2, C4.58(C2×D8), C85D416C2, C4⋊C4.191D4, D4⋊Q86C2, (C2×C8).363D4, C4.D84C2, C4⋊D8.4C2, (C2×D4).186D4, C4.64(C4○D8), C4.10D84C2, C2.6(C4⋊D8), C2.8(C88D4), C4⋊C8.18C22, C4.38(C2×SD16), C4⋊Q8.41C22, (C4×C8).249C22, C4.114(C8⋊C22), C2.8(D4.3D4), (C4×D4).274C22, C41D4.24C22, C22.177(C4⋊D4), (C2×C4).1(C4○D4), (C2×C4).1251(C2×D4), SmallGroup(128,397)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C88D8
C1C2C22C2×C4C42C4×D4C8×D4 — C88D8
C1C22C42 — C88D8
C1C22C42 — C88D8
C1C22C22C42 — C88D8

Generators and relations for C88D8
 G = < a,b,c | a8=b8=c2=1, bab-1=cac=a3, cbc=b-1 >

Subgroups: 248 in 94 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C41D4, C4⋊Q8, C22×C8, C2×D8, C2×SD16, C4.D8, C4.10D8, C82C8, C8×D4, C4⋊D8, D4⋊Q8, C85D4, C88D8
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×SD16, C4○D8, C8⋊C22, C4⋊D8, C88D4, D4.3D4, C88D8

Character table of C88D8

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111441622224441622224444448888
ρ111111111111111111111111111111    trivial
ρ21111-1-1-11111-1-111-1-1-1-1111-1-11-11-11    linear of order 2
ρ31111-1-111111-1-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ4111111-111111111-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ51111-1-1-11111-1-11-11111-1-1-111-11111    linear of order 2
ρ611111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ7111111-11111111-11111111111-1-1-1-1    linear of order 2
ρ81111-1-111111-1-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ92222000-22-2200-202222000-2-200000    orthogonal lifted from D4
ρ102222000-22-2200-20-2-2-2-20002200000    orthogonal lifted from D4
ρ112222-2-202-22-222-2000000000000000    orthogonal lifted from D4
ρ1222222202-22-2-2-2-2000000000000000    orthogonal lifted from D4
ρ132-22-2000020-200002-2-2200000022-2-2    orthogonal lifted from D8
ρ142-22-2000020-20000-222-2000000-222-2    orthogonal lifted from D8
ρ152-22-2000020-20000-222-20000002-2-22    orthogonal lifted from D8
ρ162-22-2000020-200002-2-22000000-2-222    orthogonal lifted from D8
ρ1722-2-2000-20202i-2i00--2-2--2-2-22-2--2-220000    complex lifted from C4○D8
ρ182222000-2-2-2-200200000-2i-2i2i002i0000    complex lifted from C4○D4
ρ1922-2-2-22020-200000--2-2--2-2--2-2-2-2--2--20000    complex lifted from SD16
ρ2022-2-2-22020-200000-2--2-2--2-2--2--2--2-2-20000    complex lifted from SD16
ρ212222000-2-2-2-2002000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ2222-2-22-2020-200000-2--2-2--2--2-2-2--2-2--20000    complex lifted from SD16
ρ2322-2-22-2020-200000--2-2--2-2-2--2--2-2--2-20000    complex lifted from SD16
ρ2422-2-2000-20202i-2i00-2--2-2--22-22-2--2-20000    complex lifted from C4○D8
ρ2522-2-2000-2020-2i2i00--2-2--2-22-22--2-2-20000    complex lifted from C4○D8
ρ2622-2-2000-2020-2i2i00-2--2-2--2-22-2-2--220000    complex lifted from C4○D8
ρ274-44-40000-404000000000000000000    orthogonal lifted from C8⋊C22
ρ284-4-44000000000002-22-2-2-2-2-20000000000    complex lifted from D4.3D4
ρ294-4-4400000000000-2-2-2-22-22-20000000000    complex lifted from D4.3D4

Smallest permutation representation of C88D8
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25 57 42 20 55 40 10)(2 28 58 45 21 50 33 13)(3 31 59 48 22 53 34 16)(4 26 60 43 23 56 35 11)(5 29 61 46 24 51 36 14)(6 32 62 41 17 54 37 9)(7 27 63 44 18 49 38 12)(8 30 64 47 19 52 39 15)
(2 4)(3 7)(6 8)(9 30)(10 25)(11 28)(12 31)(13 26)(14 29)(15 32)(16 27)(17 19)(18 22)(21 23)(33 60)(34 63)(35 58)(36 61)(37 64)(38 59)(39 62)(40 57)(41 52)(42 55)(43 50)(44 53)(45 56)(46 51)(47 54)(48 49)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,57,42,20,55,40,10)(2,28,58,45,21,50,33,13)(3,31,59,48,22,53,34,16)(4,26,60,43,23,56,35,11)(5,29,61,46,24,51,36,14)(6,32,62,41,17,54,37,9)(7,27,63,44,18,49,38,12)(8,30,64,47,19,52,39,15), (2,4)(3,7)(6,8)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)(17,19)(18,22)(21,23)(33,60)(34,63)(35,58)(36,61)(37,64)(38,59)(39,62)(40,57)(41,52)(42,55)(43,50)(44,53)(45,56)(46,51)(47,54)(48,49)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,57,42,20,55,40,10)(2,28,58,45,21,50,33,13)(3,31,59,48,22,53,34,16)(4,26,60,43,23,56,35,11)(5,29,61,46,24,51,36,14)(6,32,62,41,17,54,37,9)(7,27,63,44,18,49,38,12)(8,30,64,47,19,52,39,15), (2,4)(3,7)(6,8)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)(17,19)(18,22)(21,23)(33,60)(34,63)(35,58)(36,61)(37,64)(38,59)(39,62)(40,57)(41,52)(42,55)(43,50)(44,53)(45,56)(46,51)(47,54)(48,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25,57,42,20,55,40,10),(2,28,58,45,21,50,33,13),(3,31,59,48,22,53,34,16),(4,26,60,43,23,56,35,11),(5,29,61,46,24,51,36,14),(6,32,62,41,17,54,37,9),(7,27,63,44,18,49,38,12),(8,30,64,47,19,52,39,15)], [(2,4),(3,7),(6,8),(9,30),(10,25),(11,28),(12,31),(13,26),(14,29),(15,32),(16,27),(17,19),(18,22),(21,23),(33,60),(34,63),(35,58),(36,61),(37,64),(38,59),(39,62),(40,57),(41,52),(42,55),(43,50),(44,53),(45,56),(46,51),(47,54),(48,49)]])

Matrix representation of C88D8 in GL4(𝔽17) generated by

0500
71000
00160
00016
,
1000
21600
00314
0033
,
1000
21600
0010
00016
G:=sub<GL(4,GF(17))| [0,7,0,0,5,10,0,0,0,0,16,0,0,0,0,16],[1,2,0,0,0,16,0,0,0,0,3,3,0,0,14,3],[1,2,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C88D8 in GAP, Magma, Sage, TeX

C_8\rtimes_8D_8
% in TeX

G:=Group("C8:8D8");
// GroupNames label

G:=SmallGroup(128,397);
// by ID

G=gap.SmallGroup(128,397);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,64,422,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

Export

Character table of C88D8 in TeX

׿
×
𝔽