p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊8D8, D4⋊1SD16, C42.216C23, C8⋊2C8⋊2C2, (C8×D4)⋊28C2, C4.58(C2×D8), C8⋊5D4⋊16C2, C4⋊C4.191D4, D4⋊Q8⋊6C2, (C2×C8).363D4, C4.D8⋊4C2, C4⋊D8.4C2, (C2×D4).186D4, C4.64(C4○D8), C4.10D8⋊4C2, C2.6(C4⋊D8), C2.8(C8⋊8D4), C4⋊C8.18C22, C4.38(C2×SD16), C4⋊Q8.41C22, (C4×C8).249C22, C4.114(C8⋊C22), C2.8(D4.3D4), (C4×D4).274C22, C4⋊1D4.24C22, C22.177(C4⋊D4), (C2×C4).1(C4○D4), (C2×C4).1251(C2×D4), SmallGroup(128,397)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊8D8
G = < a,b,c | a8=b8=c2=1, bab-1=cac=a3, cbc=b-1 >
Subgroups: 248 in 94 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C4⋊1D4, C4⋊Q8, C22×C8, C2×D8, C2×SD16, C4.D8, C4.10D8, C8⋊2C8, C8×D4, C4⋊D8, D4⋊Q8, C8⋊5D4, C8⋊8D8
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×SD16, C4○D8, C8⋊C22, C4⋊D8, C8⋊8D4, D4.3D4, C8⋊8D8
Character table of C8⋊8D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√2 | -√-2 | √-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √2 | √-2 | -√-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | √2 | -√-2 | √-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | -√2 | √-2 | -√-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25 57 42 20 55 40 10)(2 28 58 45 21 50 33 13)(3 31 59 48 22 53 34 16)(4 26 60 43 23 56 35 11)(5 29 61 46 24 51 36 14)(6 32 62 41 17 54 37 9)(7 27 63 44 18 49 38 12)(8 30 64 47 19 52 39 15)
(2 4)(3 7)(6 8)(9 30)(10 25)(11 28)(12 31)(13 26)(14 29)(15 32)(16 27)(17 19)(18 22)(21 23)(33 60)(34 63)(35 58)(36 61)(37 64)(38 59)(39 62)(40 57)(41 52)(42 55)(43 50)(44 53)(45 56)(46 51)(47 54)(48 49)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,57,42,20,55,40,10)(2,28,58,45,21,50,33,13)(3,31,59,48,22,53,34,16)(4,26,60,43,23,56,35,11)(5,29,61,46,24,51,36,14)(6,32,62,41,17,54,37,9)(7,27,63,44,18,49,38,12)(8,30,64,47,19,52,39,15), (2,4)(3,7)(6,8)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)(17,19)(18,22)(21,23)(33,60)(34,63)(35,58)(36,61)(37,64)(38,59)(39,62)(40,57)(41,52)(42,55)(43,50)(44,53)(45,56)(46,51)(47,54)(48,49)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,57,42,20,55,40,10)(2,28,58,45,21,50,33,13)(3,31,59,48,22,53,34,16)(4,26,60,43,23,56,35,11)(5,29,61,46,24,51,36,14)(6,32,62,41,17,54,37,9)(7,27,63,44,18,49,38,12)(8,30,64,47,19,52,39,15), (2,4)(3,7)(6,8)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)(17,19)(18,22)(21,23)(33,60)(34,63)(35,58)(36,61)(37,64)(38,59)(39,62)(40,57)(41,52)(42,55)(43,50)(44,53)(45,56)(46,51)(47,54)(48,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25,57,42,20,55,40,10),(2,28,58,45,21,50,33,13),(3,31,59,48,22,53,34,16),(4,26,60,43,23,56,35,11),(5,29,61,46,24,51,36,14),(6,32,62,41,17,54,37,9),(7,27,63,44,18,49,38,12),(8,30,64,47,19,52,39,15)], [(2,4),(3,7),(6,8),(9,30),(10,25),(11,28),(12,31),(13,26),(14,29),(15,32),(16,27),(17,19),(18,22),(21,23),(33,60),(34,63),(35,58),(36,61),(37,64),(38,59),(39,62),(40,57),(41,52),(42,55),(43,50),(44,53),(45,56),(46,51),(47,54),(48,49)]])
Matrix representation of C8⋊8D8 ►in GL4(𝔽17) generated by
0 | 5 | 0 | 0 |
7 | 10 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
2 | 16 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 3 | 3 |
1 | 0 | 0 | 0 |
2 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [0,7,0,0,5,10,0,0,0,0,16,0,0,0,0,16],[1,2,0,0,0,16,0,0,0,0,3,3,0,0,14,3],[1,2,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C8⋊8D8 in GAP, Magma, Sage, TeX
C_8\rtimes_8D_8
% in TeX
G:=Group("C8:8D8");
// GroupNames label
G:=SmallGroup(128,397);
// by ID
G=gap.SmallGroup(128,397);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,64,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=c*a*c=a^3,c*b*c=b^-1>;
// generators/relations
Export