Copied to
clipboard

G = C8⋊D12order 192 = 26·3

1st semidirect product of C8 and D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C81D12, C241D4, C42.18D6, C8⋊C43S3, C31(C83D4), (C2×C8).55D6, (C2×D24)⋊10C2, C4⋊D122C2, (C2×C12).36D4, C4.34(C2×D12), (C2×C4).25D12, C427S32C2, C12.277(C2×D4), C2.7(C8⋊D6), C6.7(C41D4), C6.4(C8⋊C22), (C4×C12).3C22, C2.9(C4⋊D12), (C2×C24).56C22, (C2×D12).6C22, C22.97(C2×D12), (C2×C12).733C23, (C2×Dic6).7C22, (C3×C8⋊C4)⋊4C2, (C2×C24⋊C2)⋊1C2, (C2×C6).116(C2×D4), (C2×C4).677(C22×S3), SmallGroup(192,271)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C8⋊D12
C1C3C6C12C2×C12C2×D12C4⋊D12 — C8⋊D12
C3C6C2×C12 — C8⋊D12
C1C22C42C8⋊C4

Generators and relations for C8⋊D12
 G = < a,b,c | a8=b12=c2=1, bab-1=a5, cac=a3, cbc=b-1 >

Subgroups: 600 in 144 conjugacy classes, 47 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C2×C8, D8, SD16, C2×D4, C2×Q8, C24, Dic6, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C8⋊C4, C4.4D4, C41D4, C2×D8, C2×SD16, C24⋊C2, D24, D6⋊C4, C4×C12, C2×C24, C2×Dic6, C2×D12, C2×D12, C2×D12, C83D4, C3×C8⋊C4, C4⋊D12, C427S3, C2×C24⋊C2, C2×D24, C8⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C41D4, C8⋊C22, C2×D12, C83D4, C4⋊D12, C8⋊D6, C8⋊D12

Smallest permutation representation of C8⋊D12
On 96 points
Generators in S96
(1 20 32 89 39 56 66 78)(2 57 33 79 40 21 67 90)(3 22 34 91 41 58 68 80)(4 59 35 81 42 23 69 92)(5 24 36 93 43 60 70 82)(6 49 25 83 44 13 71 94)(7 14 26 95 45 50 72 84)(8 51 27 73 46 15 61 96)(9 16 28 85 47 52 62 74)(10 53 29 75 48 17 63 86)(11 18 30 87 37 54 64 76)(12 55 31 77 38 19 65 88)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 77)(2 76)(3 75)(4 74)(5 73)(6 84)(7 83)(8 82)(9 81)(10 80)(11 79)(12 78)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 50)(26 49)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 96)(44 95)(45 94)(46 93)(47 92)(48 91)

G:=sub<Sym(96)| (1,20,32,89,39,56,66,78)(2,57,33,79,40,21,67,90)(3,22,34,91,41,58,68,80)(4,59,35,81,42,23,69,92)(5,24,36,93,43,60,70,82)(6,49,25,83,44,13,71,94)(7,14,26,95,45,50,72,84)(8,51,27,73,46,15,61,96)(9,16,28,85,47,52,62,74)(10,53,29,75,48,17,63,86)(11,18,30,87,37,54,64,76)(12,55,31,77,38,19,65,88), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,77)(2,76)(3,75)(4,74)(5,73)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,50)(26,49)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)>;

G:=Group( (1,20,32,89,39,56,66,78)(2,57,33,79,40,21,67,90)(3,22,34,91,41,58,68,80)(4,59,35,81,42,23,69,92)(5,24,36,93,43,60,70,82)(6,49,25,83,44,13,71,94)(7,14,26,95,45,50,72,84)(8,51,27,73,46,15,61,96)(9,16,28,85,47,52,62,74)(10,53,29,75,48,17,63,86)(11,18,30,87,37,54,64,76)(12,55,31,77,38,19,65,88), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,77)(2,76)(3,75)(4,74)(5,73)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,50)(26,49)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91) );

G=PermutationGroup([[(1,20,32,89,39,56,66,78),(2,57,33,79,40,21,67,90),(3,22,34,91,41,58,68,80),(4,59,35,81,42,23,69,92),(5,24,36,93,43,60,70,82),(6,49,25,83,44,13,71,94),(7,14,26,95,45,50,72,84),(8,51,27,73,46,15,61,96),(9,16,28,85,47,52,62,74),(10,53,29,75,48,17,63,86),(11,18,30,87,37,54,64,76),(12,55,31,77,38,19,65,88)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,77),(2,76),(3,75),(4,74),(5,73),(6,84),(7,83),(8,82),(9,81),(10,80),(11,79),(12,78),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,50),(26,49),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,96),(44,95),(45,94),(46,93),(47,92),(48,91)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222223444446668888121212121212121224···24
size111124242422244242224444222244444···4

36 irreducible representations

dim111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D12D12C8⋊C22C8⋊D6
kernelC8⋊D12C3×C8⋊C4C4⋊D12C427S3C2×C24⋊C2C2×D24C8⋊C4C24C2×C12C42C2×C8C8C2×C4C6C2
# reps111122142128424

Matrix representation of C8⋊D12 in GL6(𝔽73)

7200000
0720000
0057604619
0013705427
001701613
00017603
,
72700000
2510000
002746163
0027547013
003164627
0057604619
,
72700000
010000
00007272
000001
00727200
000100

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,57,13,17,0,0,0,60,70,0,17,0,0,46,54,16,60,0,0,19,27,13,3],[72,25,0,0,0,0,70,1,0,0,0,0,0,0,27,27,3,57,0,0,46,54,16,60,0,0,16,70,46,46,0,0,3,13,27,19],[72,0,0,0,0,0,70,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,72,1,0,0,72,0,0,0,0,0,72,1,0,0] >;

C8⋊D12 in GAP, Magma, Sage, TeX

C_8\rtimes D_{12}
% in TeX

G:=Group("C8:D12");
// GroupNames label

G:=SmallGroup(192,271);
// by ID

G=gap.SmallGroup(192,271);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,387,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,b*a*b^-1=a^5,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽