Copied to
clipboard

G = D4.3SD16order 128 = 27

3rd non-split extension by D4 of SD16 acting via SD16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4.3SD16, C42.230C23, C82C85C2, C4⋊C4.205D4, (C8×D4).14C2, (C2×C8).313D4, (C2×D4).193D4, C4.70(C4○D8), C4.10D86C2, D4⋊Q8.5C2, C4.42(C2×SD16), C4⋊Q8.53C22, C2.14(C88D4), C4⋊C8.180C22, C4.90(C8⋊C22), (C4×C8).255C22, C4.SD1623C2, D4.D4.8C2, C2.9(D4.2D4), (C4×D4).281C22, C2.10(D4.5D4), C22.191(C4⋊D4), (C2×C4).15(C4○D4), (C2×C4).1265(C2×D4), SmallGroup(128,411)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — D4.3SD16
C1C2C22C2×C4C42C4×D4C8×D4 — D4.3SD16
C1C22C42 — D4.3SD16
C1C22C42 — D4.3SD16
C1C22C22C42 — D4.3SD16

Generators and relations for D4.3SD16
 G = < a,b,c,d | a4=b2=c8=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c3 >

Subgroups: 184 in 83 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C22×C8, C2×SD16, C4.10D8, C82C8, C8×D4, D4.D4, D4⋊Q8, C4.SD16, D4.3SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8⋊C22, D4.2D4, C88D4, D4.5D4, D4.3SD16

Character table of D4.3SD16

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111442222444161622224444448888
ρ111111111111111111111111111111    trivial
ρ21111-1-11111-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ31111-1-11111-11-1-1-11111-1-1-111-11111    linear of order 2
ρ41111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ61111-1-11111-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ71111-1-11111-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ81111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ92222-2-2-22-222-220000000000000000    orthogonal lifted from D4
ρ102222002-22-20-20002222000-2-200000    orthogonal lifted from D4
ρ112222002-22-20-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ12222222-22-22-2-2-20000000000000000    orthogonal lifted from D4
ρ13222200-2-2-2-2020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ14222200-2-2-2-20200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ1522-2-2000-202-2i02i00--2-2-2--2-22-2--2-220000    complex lifted from C4○D8
ρ1622-2-2000-2022i0-2i00-2--2--2-2-22-2-2--220000    complex lifted from C4○D8
ρ1722-2-22-2020-200000--2-2-2--2-2--2--2-2--2-20000    complex lifted from SD16
ρ182-22-200-2020000002i-2i2i-2i000000--2-2-22    complex lifted from C4○D8
ρ192-22-200-2020000002i-2i2i-2i000000-22--2-2    complex lifted from C4○D8
ρ2022-2-2-22020-200000--2-2-2--2--2-2-2-2--2--20000    complex lifted from SD16
ρ212-22-200-202000000-2i2i-2i2i000000--22-2-2    complex lifted from C4○D8
ρ222-22-200-202000000-2i2i-2i2i000000-2-2--22    complex lifted from C4○D8
ρ2322-2-22-2020-200000-2--2--2-2--2-2-2--2-2--20000    complex lifted from SD16
ρ2422-2-2000-202-2i02i00-2--2--2-22-22-2--2-20000    complex lifted from C4○D8
ρ2522-2-2000-2022i0-2i00--2-2-2--22-22--2-2-20000    complex lifted from C4○D8
ρ2622-2-2-22020-200000-2--2--2-2-2--2--2--2-2-20000    complex lifted from SD16
ρ274-44-40040-400000000000000000000    orthogonal lifted from C8⋊C22
ρ284-4-44000000000002222-22-220000000000    symplectic lifted from D4.5D4, Schur index 2
ρ294-4-4400000000000-22-2222220000000000    symplectic lifted from D4.5D4, Schur index 2

Smallest permutation representation of D4.3SD16
On 64 points
Generators in S64
(1 45 35 52)(2 46 36 53)(3 47 37 54)(4 48 38 55)(5 41 39 56)(6 42 40 49)(7 43 33 50)(8 44 34 51)(9 62 19 31)(10 63 20 32)(11 64 21 25)(12 57 22 26)(13 58 23 27)(14 59 24 28)(15 60 17 29)(16 61 18 30)
(1 56)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 35 32)(2 27 36 58)(3 61 37 30)(4 25 38 64)(5 59 39 28)(6 31 40 62)(7 57 33 26)(8 29 34 60)(9 42 19 49)(10 52 20 45)(11 48 21 55)(12 50 22 43)(13 46 23 53)(14 56 24 41)(15 44 17 51)(16 54 18 47)

G:=sub<Sym(64)| (1,45,35,52)(2,46,36,53)(3,47,37,54)(4,48,38,55)(5,41,39,56)(6,42,40,49)(7,43,33,50)(8,44,34,51)(9,62,19,31)(10,63,20,32)(11,64,21,25)(12,57,22,26)(13,58,23,27)(14,59,24,28)(15,60,17,29)(16,61,18,30), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,35,32)(2,27,36,58)(3,61,37,30)(4,25,38,64)(5,59,39,28)(6,31,40,62)(7,57,33,26)(8,29,34,60)(9,42,19,49)(10,52,20,45)(11,48,21,55)(12,50,22,43)(13,46,23,53)(14,56,24,41)(15,44,17,51)(16,54,18,47)>;

G:=Group( (1,45,35,52)(2,46,36,53)(3,47,37,54)(4,48,38,55)(5,41,39,56)(6,42,40,49)(7,43,33,50)(8,44,34,51)(9,62,19,31)(10,63,20,32)(11,64,21,25)(12,57,22,26)(13,58,23,27)(14,59,24,28)(15,60,17,29)(16,61,18,30), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,35,32)(2,27,36,58)(3,61,37,30)(4,25,38,64)(5,59,39,28)(6,31,40,62)(7,57,33,26)(8,29,34,60)(9,42,19,49)(10,52,20,45)(11,48,21,55)(12,50,22,43)(13,46,23,53)(14,56,24,41)(15,44,17,51)(16,54,18,47) );

G=PermutationGroup([[(1,45,35,52),(2,46,36,53),(3,47,37,54),(4,48,38,55),(5,41,39,56),(6,42,40,49),(7,43,33,50),(8,44,34,51),(9,62,19,31),(10,63,20,32),(11,64,21,25),(12,57,22,26),(13,58,23,27),(14,59,24,28),(15,60,17,29),(16,61,18,30)], [(1,56),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,35,32),(2,27,36,58),(3,61,37,30),(4,25,38,64),(5,59,39,28),(6,31,40,62),(7,57,33,26),(8,29,34,60),(9,42,19,49),(10,52,20,45),(11,48,21,55),(12,50,22,43),(13,46,23,53),(14,56,24,41),(15,44,17,51),(16,54,18,47)]])

Matrix representation of D4.3SD16 in GL4(𝔽17) generated by

1000
0100
0001
00160
,
16000
01600
0001
0010
,
5500
12500
00130
00013
,
16000
0100
00512
001212
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,0,1,0,0,1,0],[5,12,0,0,5,5,0,0,0,0,13,0,0,0,0,13],[16,0,0,0,0,1,0,0,0,0,5,12,0,0,12,12] >;

D4.3SD16 in GAP, Magma, Sage, TeX

D_4._3{\rm SD}_{16}
% in TeX

G:=Group("D4.3SD16");
// GroupNames label

G:=SmallGroup(128,411);
// by ID

G=gap.SmallGroup(128,411);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,512,422,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^3>;
// generators/relations

Export

Character table of D4.3SD16 in TeX

׿
×
𝔽