Copied to
clipboard

G = M4(2)⋊16D4order 128 = 27

3rd semidirect product of M4(2) and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2)⋊16D4, C8⋊D45C2, C82D45C2, C8.23(C2×D4), C88D413C2, C87D426C2, C4.Q85C22, (C2×D4).221D4, C2.12(D4○D8), C4⋊C4.31C23, C4⋊D44C22, (C2×Q8).176D4, C23.80(C2×D4), C2.D816C22, C22⋊Q84C22, C4.37(C4⋊D4), (C2×C8).258C23, (C2×C4).266C24, (C22×C8)⋊21C22, (C2×D4).68C23, (C2×D8).56C22, C4.160(C22×D4), (C2×Q8).56C23, D4⋊C493C22, C2.18(D4○SD16), Q8⋊C460C22, C22.8(C4⋊D4), (C2×SD16).8C22, M4(2)⋊C414C2, C22.29C2411C2, C23.24D440C2, (C2×M4(2))⋊55C22, (C22×C4).988C23, C22.526(C22×D4), C22.31C247C2, (C22×D4).351C22, C42⋊C2.113C22, (C2×C8○D4)⋊5C2, C4.33(C2×C4○D4), (C2×C8⋊C22)⋊19C2, (C2×C4).134(C2×D4), C2.84(C2×C4⋊D4), (C2×D4⋊C4)⋊55C2, (C2×C4).287(C4○D4), (C2×C4⋊C4).595C22, (C2×C4○D4).129C22, SmallGroup(128,1794)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2)⋊16D4
C1C2C22C2×C4C22×C4C2×C4○D4C2×C8○D4 — M4(2)⋊16D4
C1C2C2×C4 — M4(2)⋊16D4
C1C22C2×C4○D4 — M4(2)⋊16D4
C1C2C2C2×C4 — M4(2)⋊16D4

Generators and relations for M4(2)⋊16D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=a5, cac-1=a3, dad=a-1, cbc-1=a4b, bd=db, dcd=c-1 >

Subgroups: 548 in 252 conjugacy classes, 100 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, D4⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C4.4D4, C41D4, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C8○D4, C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C2×D4⋊C4, C23.24D4, M4(2)⋊C4, C88D4, C87D4, C8⋊D4, C82D4, C22.29C24, C22.31C24, C2×C8○D4, C2×C8⋊C22, M4(2)⋊16D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, C2×C4⋊D4, D4○D8, D4○SD16, M4(2)⋊16D4

Smallest permutation representation of M4(2)⋊16D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
(1 22 27 15)(2 17 28 10)(3 20 29 13)(4 23 30 16)(5 18 31 11)(6 21 32 14)(7 24 25 9)(8 19 26 12)
(2 8)(3 7)(4 6)(9 20)(10 19)(11 18)(12 17)(13 24)(14 23)(15 22)(16 21)(25 29)(26 28)(30 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,22,27,15)(2,17,28,10)(3,20,29,13)(4,23,30,16)(5,18,31,11)(6,21,32,14)(7,24,25,9)(8,19,26,12), (2,8)(3,7)(4,6)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)(25,29)(26,28)(30,32)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,22,27,15)(2,17,28,10)(3,20,29,13)(4,23,30,16)(5,18,31,11)(6,21,32,14)(7,24,25,9)(8,19,26,12), (2,8)(3,7)(4,6)(9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)(25,29)(26,28)(30,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)], [(1,22,27,15),(2,17,28,10),(3,20,29,13),(4,23,30,16),(5,18,31,11),(6,21,32,14),(7,24,25,9),(8,19,26,12)], [(2,8),(3,7),(4,6),(9,20),(10,19),(11,18),(12,17),(13,24),(14,23),(15,22),(16,21),(25,29),(26,28),(30,32)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G···4K8A8B8C8D8E···8J
order122222222224444444···488888···8
size111122448882222448···822224···4

32 irreducible representations

dim111111111111222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4C4○D4D4○D8D4○SD16
kernelM4(2)⋊16D4C2×D4⋊C4C23.24D4M4(2)⋊C4C88D4C87D4C8⋊D4C82D4C22.29C24C22.31C24C2×C8○D4C2×C8⋊C22M4(2)C2×D4C2×Q8C2×C4C2C2
# reps111122221111431422

Matrix representation of M4(2)⋊16D4 in GL6(𝔽17)

0130000
1300000
0000611
000030
0011600
0014000
,
100000
010000
0016000
0001600
000010
000001
,
0160000
100000
0000160
0000161
001000
0011600
,
100000
0160000
001000
0011600
0000160
0000161

G:=sub<GL(6,GF(17))| [0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,11,14,0,0,0,0,6,0,0,0,6,3,0,0,0,0,11,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,16,16,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,0,0,0,16,16,0,0,0,0,0,1] >;

M4(2)⋊16D4 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_{16}D_4
% in TeX

G:=Group("M4(2):16D4");
// GroupNames label

G:=SmallGroup(128,1794);
// by ID

G=gap.SmallGroup(128,1794);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,1018,521,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^5,c*a*c^-1=a^3,d*a*d=a^-1,c*b*c^-1=a^4*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽