Copied to
clipboard

G = Q8×SD16order 128 = 27

Direct product of Q8 and SD16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8×SD16, C42.520C23, C4.942- 1+4, Q826C2, C89(C2×Q8), Q84(C2×Q8), (C8×Q8)⋊23C2, (D4×Q8).9C2, D4.8(C2×Q8), C2.37(D4×Q8), C4⋊C4.281D4, C83Q827C2, Q8⋊Q847C2, (C2×Q8).271D4, C4.49(C2×SD16), C4.37(C22×Q8), C4⋊C4.268C23, C4⋊C8.351C22, (C2×C8).373C23, (C2×C4).571C24, (C4×C8).282C22, D42Q8.13C2, (C4×SD16).14C2, C4⋊Q8.200C22, (C2×D4).434C23, (C4×D4).209C22, (C2×Q8).407C23, (C4×Q8).201C22, C2.33(C22×SD16), C4.Q8.114C22, C2.106(D4○SD16), C22.831(C22×D4), D4⋊C4.189C22, Q8⋊C4.185C22, (C2×SD16).179C22, (C2×C4).1103(C2×D4), SmallGroup(128,2111)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q8×SD16
C1C2C4C2×C4C42C4×D4D4×Q8 — Q8×SD16
C1C2C2×C4 — Q8×SD16
C1C22C4×Q8 — Q8×SD16
C1C2C2C2×C4 — Q8×SD16

Generators and relations for Q8×SD16
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 336 in 185 conjugacy classes, 104 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C4×D4, C4×Q8, C4×Q8, C4×Q8, C22⋊Q8, C4⋊Q8, C4⋊Q8, C2×SD16, C22×Q8, C4×SD16, C8×Q8, Q8⋊Q8, D42Q8, C83Q8, D4×Q8, Q82, Q8×SD16
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2×D4, C2×Q8, C24, C2×SD16, C22×D4, C22×Q8, 2- 1+4, D4×Q8, C22×SD16, D4○SD16, Q8×SD16

Smallest permutation representation of Q8×SD16
On 64 points
Generators in S64
(1 13 22 55)(2 14 23 56)(3 15 24 49)(4 16 17 50)(5 9 18 51)(6 10 19 52)(7 11 20 53)(8 12 21 54)(25 58 41 34)(26 59 42 35)(27 60 43 36)(28 61 44 37)(29 62 45 38)(30 63 46 39)(31 64 47 40)(32 57 48 33)
(1 26 22 42)(2 27 23 43)(3 28 24 44)(4 29 17 45)(5 30 18 46)(6 31 19 47)(7 32 20 48)(8 25 21 41)(9 39 51 63)(10 40 52 64)(11 33 53 57)(12 34 54 58)(13 35 55 59)(14 36 56 60)(15 37 49 61)(16 38 50 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 18)(2 21)(3 24)(4 19)(5 22)(6 17)(7 20)(8 23)(9 55)(10 50)(11 53)(12 56)(13 51)(14 54)(15 49)(16 52)(25 43)(26 46)(27 41)(28 44)(29 47)(30 42)(31 45)(32 48)(33 57)(34 60)(35 63)(36 58)(37 61)(38 64)(39 59)(40 62)

G:=sub<Sym(64)| (1,13,22,55)(2,14,23,56)(3,15,24,49)(4,16,17,50)(5,9,18,51)(6,10,19,52)(7,11,20,53)(8,12,21,54)(25,58,41,34)(26,59,42,35)(27,60,43,36)(28,61,44,37)(29,62,45,38)(30,63,46,39)(31,64,47,40)(32,57,48,33), (1,26,22,42)(2,27,23,43)(3,28,24,44)(4,29,17,45)(5,30,18,46)(6,31,19,47)(7,32,20,48)(8,25,21,41)(9,39,51,63)(10,40,52,64)(11,33,53,57)(12,34,54,58)(13,35,55,59)(14,36,56,60)(15,37,49,61)(16,38,50,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18)(2,21)(3,24)(4,19)(5,22)(6,17)(7,20)(8,23)(9,55)(10,50)(11,53)(12,56)(13,51)(14,54)(15,49)(16,52)(25,43)(26,46)(27,41)(28,44)(29,47)(30,42)(31,45)(32,48)(33,57)(34,60)(35,63)(36,58)(37,61)(38,64)(39,59)(40,62)>;

G:=Group( (1,13,22,55)(2,14,23,56)(3,15,24,49)(4,16,17,50)(5,9,18,51)(6,10,19,52)(7,11,20,53)(8,12,21,54)(25,58,41,34)(26,59,42,35)(27,60,43,36)(28,61,44,37)(29,62,45,38)(30,63,46,39)(31,64,47,40)(32,57,48,33), (1,26,22,42)(2,27,23,43)(3,28,24,44)(4,29,17,45)(5,30,18,46)(6,31,19,47)(7,32,20,48)(8,25,21,41)(9,39,51,63)(10,40,52,64)(11,33,53,57)(12,34,54,58)(13,35,55,59)(14,36,56,60)(15,37,49,61)(16,38,50,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18)(2,21)(3,24)(4,19)(5,22)(6,17)(7,20)(8,23)(9,55)(10,50)(11,53)(12,56)(13,51)(14,54)(15,49)(16,52)(25,43)(26,46)(27,41)(28,44)(29,47)(30,42)(31,45)(32,48)(33,57)(34,60)(35,63)(36,58)(37,61)(38,64)(39,59)(40,62) );

G=PermutationGroup([[(1,13,22,55),(2,14,23,56),(3,15,24,49),(4,16,17,50),(5,9,18,51),(6,10,19,52),(7,11,20,53),(8,12,21,54),(25,58,41,34),(26,59,42,35),(27,60,43,36),(28,61,44,37),(29,62,45,38),(30,63,46,39),(31,64,47,40),(32,57,48,33)], [(1,26,22,42),(2,27,23,43),(3,28,24,44),(4,29,17,45),(5,30,18,46),(6,31,19,47),(7,32,20,48),(8,25,21,41),(9,39,51,63),(10,40,52,64),(11,33,53,57),(12,34,54,58),(13,35,55,59),(14,36,56,60),(15,37,49,61),(16,38,50,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,18),(2,21),(3,24),(4,19),(5,22),(6,17),(7,20),(8,23),(9,55),(10,50),(11,53),(12,56),(13,51),(14,54),(15,49),(16,52),(25,43),(26,46),(27,41),(28,44),(29,47),(30,42),(31,45),(32,48),(33,57),(34,60),(35,63),(36,58),(37,61),(38,64),(39,59),(40,62)]])

35 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I···4M4N···4S8A8B8C8D8E···8J
order1222224···44···44···488888···8
size1111442···24···48···822224···4

35 irreducible representations

dim11111111222244
type+++++++++-+-
imageC1C2C2C2C2C2C2C2D4Q8D4SD162- 1+4D4○SD16
kernelQ8×SD16C4×SD16C8×Q8Q8⋊Q8D42Q8C83Q8D4×Q8Q82C4⋊C4SD16C2×Q8Q8C4C2
# reps13133311341812

Matrix representation of Q8×SD16 in GL4(𝔽17) generated by

1000
0100
0042
00013
,
1000
0100
00315
00514
,
51200
5500
0010
0001
,
16000
0100
00160
00016
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,4,0,0,0,2,13],[1,0,0,0,0,1,0,0,0,0,3,5,0,0,15,14],[5,5,0,0,12,5,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16] >;

Q8×SD16 in GAP, Magma, Sage, TeX

Q_8\times {\rm SD}_{16}
% in TeX

G:=Group("Q8xSD16");
// GroupNames label

G:=SmallGroup(128,2111);
// by ID

G=gap.SmallGroup(128,2111);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽