p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊5SD16, C42.183C23, D4⋊C8⋊15C2, Q8⋊C8⋊15C2, C4⋊C4.48D4, C8⋊5D4⋊12C2, D4⋊3Q8⋊1C2, C4⋊D8.1C2, C4⋊C8.1C22, (C2×Q8).42D4, C4⋊Q8.5C22, C4⋊SD16⋊31C2, (C2×D4).249D4, C4.51(C4○D8), C4.6Q16⋊6C2, C4.23(C2×SD16), C4.31(C8⋊C22), (C4×C8).240C22, (C4×D4).19C22, C4⋊1D4.7C22, (C4×Q8).19C22, C2.15(D4⋊4D4), C2.14(D4⋊D4), C2.10(Q8⋊D4), C4.55(C8.C22), C22.149C22≀C2, (C2×C4).940(C2×D4), SmallGroup(128,354)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊SD16
G = < a,b,c,d | a4=b2=c8=d2=1, bab=dad=a-1, ac=ca, cbc-1=dbd=ab, dcd=c3 >
Subgroups: 304 in 118 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, C4⋊C8, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊1D4, C4⋊Q8, C2×D8, C2×SD16, D4⋊C8, Q8⋊C8, C4.6Q16, C4⋊D8, C4⋊SD16, C8⋊5D4, D4⋊3Q8, D4⋊SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, Q8⋊D4, D4⋊D4, D4⋊4D4, D4⋊SD16
Character table of D4⋊SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 57 17 34)(2 58 18 35)(3 59 19 36)(4 60 20 37)(5 61 21 38)(6 62 22 39)(7 63 23 40)(8 64 24 33)(9 54 45 31)(10 55 46 32)(11 56 47 25)(12 49 48 26)(13 50 41 27)(14 51 42 28)(15 52 43 29)(16 53 44 30)
(1 55)(2 11)(3 26)(4 41)(5 51)(6 15)(7 30)(8 45)(9 24)(10 57)(12 36)(13 20)(14 61)(16 40)(17 32)(18 47)(19 49)(21 28)(22 43)(23 53)(25 58)(27 37)(29 62)(31 33)(34 46)(35 56)(38 42)(39 52)(44 63)(48 59)(50 60)(54 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 52)(10 55)(11 50)(12 53)(13 56)(14 51)(15 54)(16 49)(18 20)(19 23)(22 24)(25 41)(26 44)(27 47)(28 42)(29 45)(30 48)(31 43)(32 46)(33 62)(34 57)(35 60)(36 63)(37 58)(38 61)(39 64)(40 59)
G:=sub<Sym(64)| (1,57,17,34)(2,58,18,35)(3,59,19,36)(4,60,20,37)(5,61,21,38)(6,62,22,39)(7,63,23,40)(8,64,24,33)(9,54,45,31)(10,55,46,32)(11,56,47,25)(12,49,48,26)(13,50,41,27)(14,51,42,28)(15,52,43,29)(16,53,44,30), (1,55)(2,11)(3,26)(4,41)(5,51)(6,15)(7,30)(8,45)(9,24)(10,57)(12,36)(13,20)(14,61)(16,40)(17,32)(18,47)(19,49)(21,28)(22,43)(23,53)(25,58)(27,37)(29,62)(31,33)(34,46)(35,56)(38,42)(39,52)(44,63)(48,59)(50,60)(54,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,52)(10,55)(11,50)(12,53)(13,56)(14,51)(15,54)(16,49)(18,20)(19,23)(22,24)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)(33,62)(34,57)(35,60)(36,63)(37,58)(38,61)(39,64)(40,59)>;
G:=Group( (1,57,17,34)(2,58,18,35)(3,59,19,36)(4,60,20,37)(5,61,21,38)(6,62,22,39)(7,63,23,40)(8,64,24,33)(9,54,45,31)(10,55,46,32)(11,56,47,25)(12,49,48,26)(13,50,41,27)(14,51,42,28)(15,52,43,29)(16,53,44,30), (1,55)(2,11)(3,26)(4,41)(5,51)(6,15)(7,30)(8,45)(9,24)(10,57)(12,36)(13,20)(14,61)(16,40)(17,32)(18,47)(19,49)(21,28)(22,43)(23,53)(25,58)(27,37)(29,62)(31,33)(34,46)(35,56)(38,42)(39,52)(44,63)(48,59)(50,60)(54,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,52)(10,55)(11,50)(12,53)(13,56)(14,51)(15,54)(16,49)(18,20)(19,23)(22,24)(25,41)(26,44)(27,47)(28,42)(29,45)(30,48)(31,43)(32,46)(33,62)(34,57)(35,60)(36,63)(37,58)(38,61)(39,64)(40,59) );
G=PermutationGroup([[(1,57,17,34),(2,58,18,35),(3,59,19,36),(4,60,20,37),(5,61,21,38),(6,62,22,39),(7,63,23,40),(8,64,24,33),(9,54,45,31),(10,55,46,32),(11,56,47,25),(12,49,48,26),(13,50,41,27),(14,51,42,28),(15,52,43,29),(16,53,44,30)], [(1,55),(2,11),(3,26),(4,41),(5,51),(6,15),(7,30),(8,45),(9,24),(10,57),(12,36),(13,20),(14,61),(16,40),(17,32),(18,47),(19,49),(21,28),(22,43),(23,53),(25,58),(27,37),(29,62),(31,33),(34,46),(35,56),(38,42),(39,52),(44,63),(48,59),(50,60),(54,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,52),(10,55),(11,50),(12,53),(13,56),(14,51),(15,54),(16,49),(18,20),(19,23),(22,24),(25,41),(26,44),(27,47),(28,42),(29,45),(30,48),(31,43),(32,46),(33,62),(34,57),(35,60),(36,63),(37,58),(38,61),(39,64),(40,59)]])
Matrix representation of D4⋊SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 3 | 3 |
5 | 5 | 0 | 0 |
12 | 5 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 5 | 12 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,14,3,0,0,3,3],[5,12,0,0,5,5,0,0,0,0,12,5,0,0,12,12],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
D4⋊SD16 in GAP, Magma, Sage, TeX
D_4\rtimes {\rm SD}_{16}
% in TeX
G:=Group("D4:SD16");
// GroupNames label
G:=SmallGroup(128,354);
// by ID
G=gap.SmallGroup(128,354);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,232,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=d*b*d=a*b,d*c*d=c^3>;
// generators/relations
Export