Copied to
clipboard

G = C8.D12order 192 = 26·3

1st non-split extension by C8 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.1D12, C24.1D4, C42.21D6, C8⋊C44S3, (C2×C8).56D6, C122Q84C2, C4.35(C2×D12), (C2×C12).39D4, (C2×C4).28D12, C31(C8.2D4), C12.278(C2×D4), C6.8(C41D4), (C4×C12).6C22, (C2×Dic12)⋊10C2, C427S3.3C2, (C2×C24).57C22, C2.9(C8.D6), (C2×D12).9C22, C6.5(C8.C22), C2.10(C4⋊D12), (C2×C12).736C23, C22.100(C2×D12), (C2×Dic6).9C22, (C3×C8⋊C4)⋊5C2, (C2×C24⋊C2).2C2, (C2×C6).119(C2×D4), (C2×C4).680(C22×S3), SmallGroup(192,274)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C8.D12
C1C3C6C12C2×C12C2×D12C427S3 — C8.D12
C3C6C2×C12 — C8.D12
C1C22C42C8⋊C4

Generators and relations for C8.D12
 G = < a,b,c | a8=b12=1, c2=a4, bab-1=a5, cac-1=a-1, cbc-1=a4b-1 >

Subgroups: 408 in 124 conjugacy classes, 47 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, Q16, C2×D4, C2×Q8, C24, Dic6, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C8⋊C4, C4.4D4, C4⋊Q8, C2×SD16, C2×Q16, C24⋊C2, Dic12, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, C2×Dic6, C2×Dic6, C2×D12, C8.2D4, C3×C8⋊C4, C122Q8, C427S3, C2×C24⋊C2, C2×Dic12, C8.D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C41D4, C8.C22, C2×D12, C8.2D4, C4⋊D12, C8.D6, C8.D12

Smallest permutation representation of C8.D12
On 96 points
Generators in S96
(1 53 91 20 82 28 61 42)(2 29 92 43 83 54 62 21)(3 55 93 22 84 30 63 44)(4 31 94 45 73 56 64 23)(5 57 95 24 74 32 65 46)(6 33 96 47 75 58 66 13)(7 59 85 14 76 34 67 48)(8 35 86 37 77 60 68 15)(9 49 87 16 78 36 69 38)(10 25 88 39 79 50 70 17)(11 51 89 18 80 26 71 40)(12 27 90 41 81 52 72 19)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 81 82 12)(2 11 83 80)(3 79 84 10)(4 9 73 78)(5 77 74 8)(6 7 75 76)(13 59 47 34)(14 33 48 58)(15 57 37 32)(16 31 38 56)(17 55 39 30)(18 29 40 54)(19 53 41 28)(20 27 42 52)(21 51 43 26)(22 25 44 50)(23 49 45 36)(24 35 46 60)(61 72 91 90)(62 89 92 71)(63 70 93 88)(64 87 94 69)(65 68 95 86)(66 85 96 67)

G:=sub<Sym(96)| (1,53,91,20,82,28,61,42)(2,29,92,43,83,54,62,21)(3,55,93,22,84,30,63,44)(4,31,94,45,73,56,64,23)(5,57,95,24,74,32,65,46)(6,33,96,47,75,58,66,13)(7,59,85,14,76,34,67,48)(8,35,86,37,77,60,68,15)(9,49,87,16,78,36,69,38)(10,25,88,39,79,50,70,17)(11,51,89,18,80,26,71,40)(12,27,90,41,81,52,72,19), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,81,82,12)(2,11,83,80)(3,79,84,10)(4,9,73,78)(5,77,74,8)(6,7,75,76)(13,59,47,34)(14,33,48,58)(15,57,37,32)(16,31,38,56)(17,55,39,30)(18,29,40,54)(19,53,41,28)(20,27,42,52)(21,51,43,26)(22,25,44,50)(23,49,45,36)(24,35,46,60)(61,72,91,90)(62,89,92,71)(63,70,93,88)(64,87,94,69)(65,68,95,86)(66,85,96,67)>;

G:=Group( (1,53,91,20,82,28,61,42)(2,29,92,43,83,54,62,21)(3,55,93,22,84,30,63,44)(4,31,94,45,73,56,64,23)(5,57,95,24,74,32,65,46)(6,33,96,47,75,58,66,13)(7,59,85,14,76,34,67,48)(8,35,86,37,77,60,68,15)(9,49,87,16,78,36,69,38)(10,25,88,39,79,50,70,17)(11,51,89,18,80,26,71,40)(12,27,90,41,81,52,72,19), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,81,82,12)(2,11,83,80)(3,79,84,10)(4,9,73,78)(5,77,74,8)(6,7,75,76)(13,59,47,34)(14,33,48,58)(15,57,37,32)(16,31,38,56)(17,55,39,30)(18,29,40,54)(19,53,41,28)(20,27,42,52)(21,51,43,26)(22,25,44,50)(23,49,45,36)(24,35,46,60)(61,72,91,90)(62,89,92,71)(63,70,93,88)(64,87,94,69)(65,68,95,86)(66,85,96,67) );

G=PermutationGroup([[(1,53,91,20,82,28,61,42),(2,29,92,43,83,54,62,21),(3,55,93,22,84,30,63,44),(4,31,94,45,73,56,64,23),(5,57,95,24,74,32,65,46),(6,33,96,47,75,58,66,13),(7,59,85,14,76,34,67,48),(8,35,86,37,77,60,68,15),(9,49,87,16,78,36,69,38),(10,25,88,39,79,50,70,17),(11,51,89,18,80,26,71,40),(12,27,90,41,81,52,72,19)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,81,82,12),(2,11,83,80),(3,79,84,10),(4,9,73,78),(5,77,74,8),(6,7,75,76),(13,59,47,34),(14,33,48,58),(15,57,37,32),(16,31,38,56),(17,55,39,30),(18,29,40,54),(19,53,41,28),(20,27,42,52),(21,51,43,26),(22,25,44,50),(23,49,45,36),(24,35,46,60),(61,72,91,90),(62,89,92,71),(63,70,93,88),(64,87,94,69),(65,68,95,86),(66,85,96,67)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222344444446668888121212121212121224···24
size111124222442424242224444222244444···4

36 irreducible representations

dim111111222222244
type+++++++++++++--
imageC1C2C2C2C2C2S3D4D4D6D6D12D12C8.C22C8.D6
kernelC8.D12C3×C8⋊C4C122Q8C427S3C2×C24⋊C2C2×Dic12C8⋊C4C24C2×C12C42C2×C8C8C2×C4C6C2
# reps111122142128424

Matrix representation of C8.D12 in GL6(𝔽73)

48670000
7250000
0000270
0000027
00431300
00603000
,
2560000
66480000
00272700
0046000
00004646
0000270
,
2560000
42480000
00272700
0004600
00003043
00001343

G:=sub<GL(6,GF(73))| [48,7,0,0,0,0,67,25,0,0,0,0,0,0,0,0,43,60,0,0,0,0,13,30,0,0,27,0,0,0,0,0,0,27,0,0],[25,66,0,0,0,0,6,48,0,0,0,0,0,0,27,46,0,0,0,0,27,0,0,0,0,0,0,0,46,27,0,0,0,0,46,0],[25,42,0,0,0,0,6,48,0,0,0,0,0,0,27,0,0,0,0,0,27,46,0,0,0,0,0,0,30,13,0,0,0,0,43,43] >;

C8.D12 in GAP, Magma, Sage, TeX

C_8.D_{12}
% in TeX

G:=Group("C8.D12");
// GroupNames label

G:=SmallGroup(192,274);
// by ID

G=gap.SmallGroup(192,274);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,387,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=1,c^2=a^4,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations

׿
×
𝔽