extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1SD16 = C12.2D8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.1SD16 | 192,45 |
C12.2SD16 = C8.Dic6 | φ: SD16/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.2SD16 | 192,46 |
C12.3SD16 = D24:8C4 | φ: SD16/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.3SD16 | 192,47 |
C12.4SD16 = C6.D16 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.4SD16 | 192,50 |
C12.5SD16 = C6.Q32 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.5SD16 | 192,51 |
C12.6SD16 = C24.Q8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.6SD16 | 192,72 |
C12.7SD16 = D24:2C4 | φ: SD16/C4 → C22 ⊆ Aut C12 | 48 | 4 | C12.7SD16 | 192,77 |
C12.8SD16 = C12.9D8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.8SD16 | 192,103 |
C12.9SD16 = C12.5Q16 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.9SD16 | 192,105 |
C12.10SD16 = C12.10D8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.10SD16 | 192,106 |
C12.11SD16 = D8:1Dic3 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.11SD16 | 192,121 |
C12.12SD16 = C6.5Q32 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.12SD16 | 192,123 |
C12.13SD16 = D12:3Q8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.13SD16 | 192,401 |
C12.14SD16 = Dic6:4Q8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.14SD16 | 192,410 |
C12.15SD16 = C12.16D8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.15SD16 | 192,629 |
C12.16SD16 = C12.9Q16 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.16SD16 | 192,638 |
C12.17SD16 = C12.SD16 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.17SD16 | 192,639 |
C12.18SD16 = D12:5Q8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.18SD16 | 192,643 |
C12.19SD16 = C12.D8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 96 | | C12.19SD16 | 192,647 |
C12.20SD16 = C12.Q16 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.20SD16 | 192,652 |
C12.21SD16 = Dic6:6Q8 | φ: SD16/C4 → C22 ⊆ Aut C12 | 192 | | C12.21SD16 | 192,653 |
C12.22SD16 = C2.Dic24 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.22SD16 | 192,62 |
C12.23SD16 = C2.D48 | φ: SD16/C8 → C2 ⊆ Aut C12 | 96 | | C12.23SD16 | 192,68 |
C12.24SD16 = C24:9Q8 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.24SD16 | 192,239 |
C12.25SD16 = C12.14Q16 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.25SD16 | 192,240 |
C12.26SD16 = C4.5D24 | φ: SD16/C8 → C2 ⊆ Aut C12 | 96 | | C12.26SD16 | 192,253 |
C12.27SD16 = C4.8Dic12 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.27SD16 | 192,15 |
C12.28SD16 = C24:2C8 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.28SD16 | 192,16 |
C12.29SD16 = C4.17D24 | φ: SD16/C8 → C2 ⊆ Aut C12 | 96 | | C12.29SD16 | 192,18 |
C12.30SD16 = C3xC2.D16 | φ: SD16/C8 → C2 ⊆ Aut C12 | 96 | | C12.30SD16 | 192,163 |
C12.31SD16 = C3xC2.Q32 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.31SD16 | 192,164 |
C12.32SD16 = C3xC4.4D8 | φ: SD16/C8 → C2 ⊆ Aut C12 | 96 | | C12.32SD16 | 192,919 |
C12.33SD16 = C3xC4.SD16 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.33SD16 | 192,920 |
C12.34SD16 = C3xC8:3Q8 | φ: SD16/C8 → C2 ⊆ Aut C12 | 192 | | C12.34SD16 | 192,931 |
C12.35SD16 = C4.Dic12 | φ: SD16/D4 → C2 ⊆ Aut C12 | 192 | | C12.35SD16 | 192,40 |
C12.36SD16 = C24.6Q8 | φ: SD16/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.36SD16 | 192,53 |
C12.37SD16 = D8:2Dic3 | φ: SD16/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.37SD16 | 192,125 |
C12.38SD16 = C12.38SD16 | φ: SD16/D4 → C2 ⊆ Aut C12 | 96 | | C12.38SD16 | 192,567 |
C12.39SD16 = C12.39SD16 | φ: SD16/D4 → C2 ⊆ Aut C12 | 192 | | C12.39SD16 | 192,39 |
C12.40SD16 = Dic6:2C8 | φ: SD16/D4 → C2 ⊆ Aut C12 | 192 | | C12.40SD16 | 192,43 |
C12.41SD16 = C12.57D8 | φ: SD16/D4 → C2 ⊆ Aut C12 | 96 | | C12.41SD16 | 192,93 |
C12.42SD16 = C3xC4.6Q16 | φ: SD16/D4 → C2 ⊆ Aut C12 | 192 | | C12.42SD16 | 192,139 |
C12.43SD16 = C3xD8:2C4 | φ: SD16/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.43SD16 | 192,166 |
C12.44SD16 = C3xC8.Q8 | φ: SD16/D4 → C2 ⊆ Aut C12 | 48 | 4 | C12.44SD16 | 192,171 |
C12.45SD16 = C3xD4:2Q8 | φ: SD16/D4 → C2 ⊆ Aut C12 | 96 | | C12.45SD16 | 192,909 |
C12.46SD16 = C12.47D8 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 192 | | C12.46SD16 | 192,41 |
C12.47SD16 = C4.D24 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 96 | | C12.47SD16 | 192,44 |
C12.48SD16 = Q8:4Dic6 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 192 | | C12.48SD16 | 192,579 |
C12.49SD16 = D12:2C8 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 96 | | C12.49SD16 | 192,42 |
C12.50SD16 = C12.26Q16 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 192 | | C12.50SD16 | 192,94 |
C12.51SD16 = C3xC4.D8 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 96 | | C12.51SD16 | 192,137 |
C12.52SD16 = C3xC4.10D8 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 192 | | C12.52SD16 | 192,138 |
C12.53SD16 = C3xQ8:Q8 | φ: SD16/Q8 → C2 ⊆ Aut C12 | 192 | | C12.53SD16 | 192,908 |
C12.54SD16 = C3xD4:C8 | central extension (φ=1) | 96 | | C12.54SD16 | 192,131 |
C12.55SD16 = C3xQ8:C8 | central extension (φ=1) | 192 | | C12.55SD16 | 192,132 |
C12.56SD16 = C3xC8:2C8 | central extension (φ=1) | 192 | | C12.56SD16 | 192,140 |