Extensions 1→N→G→Q→1 with N=C12 and Q=SD16

Direct product G=NxQ with N=C12 and Q=SD16
dρLabelID
C12xSD1696C12xSD16192,871

Semidirect products G=N:Q with N=C12 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C12:1SD16 = C12:SD16φ: SD16/C4C22 ⊆ Aut C1296C12:1SD16192,400
C12:2SD16 = Dic6:8D4φ: SD16/C4C22 ⊆ Aut C1296C12:2SD16192,407
C12:3SD16 = Dic6:9D4φ: SD16/C4C22 ⊆ Aut C1296C12:3SD16192,634
C12:4SD16 = C12:4SD16φ: SD16/C4C22 ⊆ Aut C1296C12:4SD16192,635
C12:5SD16 = C12:5SD16φ: SD16/C4C22 ⊆ Aut C1296C12:5SD16192,642
C12:6SD16 = C12:6SD16φ: SD16/C4C22 ⊆ Aut C1296C12:6SD16192,644
C12:7SD16 = C8:5D12φ: SD16/C8C2 ⊆ Aut C1296C12:7SD16192,252
C12:8SD16 = C4xC24:C2φ: SD16/C8C2 ⊆ Aut C1296C12:8SD16192,250
C12:9SD16 = C3xC8:5D4φ: SD16/C8C2 ⊆ Aut C1296C12:9SD16192,925
C12:10SD16 = D4.2D12φ: SD16/D4C2 ⊆ Aut C1296C12:10SD16192,578
C12:11SD16 = C4xD4.S3φ: SD16/D4C2 ⊆ Aut C1296C12:11SD16192,576
C12:12SD16 = C3xD4.D4φ: SD16/D4C2 ⊆ Aut C1296C12:12SD16192,894
C12:13SD16 = Q8:2D12φ: SD16/Q8C2 ⊆ Aut C1296C12:13SD16192,586
C12:14SD16 = C4xQ8:2S3φ: SD16/Q8C2 ⊆ Aut C1296C12:14SD16192,584
C12:15SD16 = C3xC4:SD16φ: SD16/Q8C2 ⊆ Aut C1296C12:15SD16192,893

Non-split extensions G=N.Q with N=C12 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C12.1SD16 = C12.2D8φ: SD16/C4C22 ⊆ Aut C12192C12.1SD16192,45
C12.2SD16 = C8.Dic6φ: SD16/C4C22 ⊆ Aut C12484C12.2SD16192,46
C12.3SD16 = D24:8C4φ: SD16/C4C22 ⊆ Aut C12484C12.3SD16192,47
C12.4SD16 = C6.D16φ: SD16/C4C22 ⊆ Aut C1296C12.4SD16192,50
C12.5SD16 = C6.Q32φ: SD16/C4C22 ⊆ Aut C12192C12.5SD16192,51
C12.6SD16 = C24.Q8φ: SD16/C4C22 ⊆ Aut C12484C12.6SD16192,72
C12.7SD16 = D24:2C4φ: SD16/C4C22 ⊆ Aut C12484C12.7SD16192,77
C12.8SD16 = C12.9D8φ: SD16/C4C22 ⊆ Aut C1296C12.8SD16192,103
C12.9SD16 = C12.5Q16φ: SD16/C4C22 ⊆ Aut C12192C12.9SD16192,105
C12.10SD16 = C12.10D8φ: SD16/C4C22 ⊆ Aut C12192C12.10SD16192,106
C12.11SD16 = D8:1Dic3φ: SD16/C4C22 ⊆ Aut C1296C12.11SD16192,121
C12.12SD16 = C6.5Q32φ: SD16/C4C22 ⊆ Aut C12192C12.12SD16192,123
C12.13SD16 = D12:3Q8φ: SD16/C4C22 ⊆ Aut C1296C12.13SD16192,401
C12.14SD16 = Dic6:4Q8φ: SD16/C4C22 ⊆ Aut C12192C12.14SD16192,410
C12.15SD16 = C12.16D8φ: SD16/C4C22 ⊆ Aut C1296C12.15SD16192,629
C12.16SD16 = C12.9Q16φ: SD16/C4C22 ⊆ Aut C12192C12.16SD16192,638
C12.17SD16 = C12.SD16φ: SD16/C4C22 ⊆ Aut C12192C12.17SD16192,639
C12.18SD16 = D12:5Q8φ: SD16/C4C22 ⊆ Aut C1296C12.18SD16192,643
C12.19SD16 = C12.D8φ: SD16/C4C22 ⊆ Aut C1296C12.19SD16192,647
C12.20SD16 = C12.Q16φ: SD16/C4C22 ⊆ Aut C12192C12.20SD16192,652
C12.21SD16 = Dic6:6Q8φ: SD16/C4C22 ⊆ Aut C12192C12.21SD16192,653
C12.22SD16 = C2.Dic24φ: SD16/C8C2 ⊆ Aut C12192C12.22SD16192,62
C12.23SD16 = C2.D48φ: SD16/C8C2 ⊆ Aut C1296C12.23SD16192,68
C12.24SD16 = C24:9Q8φ: SD16/C8C2 ⊆ Aut C12192C12.24SD16192,239
C12.25SD16 = C12.14Q16φ: SD16/C8C2 ⊆ Aut C12192C12.25SD16192,240
C12.26SD16 = C4.5D24φ: SD16/C8C2 ⊆ Aut C1296C12.26SD16192,253
C12.27SD16 = C4.8Dic12φ: SD16/C8C2 ⊆ Aut C12192C12.27SD16192,15
C12.28SD16 = C24:2C8φ: SD16/C8C2 ⊆ Aut C12192C12.28SD16192,16
C12.29SD16 = C4.17D24φ: SD16/C8C2 ⊆ Aut C1296C12.29SD16192,18
C12.30SD16 = C3xC2.D16φ: SD16/C8C2 ⊆ Aut C1296C12.30SD16192,163
C12.31SD16 = C3xC2.Q32φ: SD16/C8C2 ⊆ Aut C12192C12.31SD16192,164
C12.32SD16 = C3xC4.4D8φ: SD16/C8C2 ⊆ Aut C1296C12.32SD16192,919
C12.33SD16 = C3xC4.SD16φ: SD16/C8C2 ⊆ Aut C12192C12.33SD16192,920
C12.34SD16 = C3xC8:3Q8φ: SD16/C8C2 ⊆ Aut C12192C12.34SD16192,931
C12.35SD16 = C4.Dic12φ: SD16/D4C2 ⊆ Aut C12192C12.35SD16192,40
C12.36SD16 = C24.6Q8φ: SD16/D4C2 ⊆ Aut C12484C12.36SD16192,53
C12.37SD16 = D8:2Dic3φ: SD16/D4C2 ⊆ Aut C12484C12.37SD16192,125
C12.38SD16 = C12.38SD16φ: SD16/D4C2 ⊆ Aut C1296C12.38SD16192,567
C12.39SD16 = C12.39SD16φ: SD16/D4C2 ⊆ Aut C12192C12.39SD16192,39
C12.40SD16 = Dic6:2C8φ: SD16/D4C2 ⊆ Aut C12192C12.40SD16192,43
C12.41SD16 = C12.57D8φ: SD16/D4C2 ⊆ Aut C1296C12.41SD16192,93
C12.42SD16 = C3xC4.6Q16φ: SD16/D4C2 ⊆ Aut C12192C12.42SD16192,139
C12.43SD16 = C3xD8:2C4φ: SD16/D4C2 ⊆ Aut C12484C12.43SD16192,166
C12.44SD16 = C3xC8.Q8φ: SD16/D4C2 ⊆ Aut C12484C12.44SD16192,171
C12.45SD16 = C3xD4:2Q8φ: SD16/D4C2 ⊆ Aut C1296C12.45SD16192,909
C12.46SD16 = C12.47D8φ: SD16/Q8C2 ⊆ Aut C12192C12.46SD16192,41
C12.47SD16 = C4.D24φ: SD16/Q8C2 ⊆ Aut C1296C12.47SD16192,44
C12.48SD16 = Q8:4Dic6φ: SD16/Q8C2 ⊆ Aut C12192C12.48SD16192,579
C12.49SD16 = D12:2C8φ: SD16/Q8C2 ⊆ Aut C1296C12.49SD16192,42
C12.50SD16 = C12.26Q16φ: SD16/Q8C2 ⊆ Aut C12192C12.50SD16192,94
C12.51SD16 = C3xC4.D8φ: SD16/Q8C2 ⊆ Aut C1296C12.51SD16192,137
C12.52SD16 = C3xC4.10D8φ: SD16/Q8C2 ⊆ Aut C12192C12.52SD16192,138
C12.53SD16 = C3xQ8:Q8φ: SD16/Q8C2 ⊆ Aut C12192C12.53SD16192,908
C12.54SD16 = C3xD4:C8central extension (φ=1)96C12.54SD16192,131
C12.55SD16 = C3xQ8:C8central extension (φ=1)192C12.55SD16192,132
C12.56SD16 = C3xC8:2C8central extension (φ=1)192C12.56SD16192,140

׿
x
:
Z
F
o
wr
Q
<