Copied to
clipboard

G = D4.3D28order 448 = 26·7

3rd non-split extension by D4 of D28 acting via D28/C28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.3D28, C56.87D4, Q8.3D28, M4(2).33D14, C8○D41D7, (C7×D4).20D4, (C2×C8).80D14, C28.42(C2×D4), C4.19(C2×D28), (C7×Q8).20D4, C4○D4.31D14, C74(D4.3D4), C8.44(C7⋊D4), C56.C414C2, D4⋊D14.1C2, D4.9D143C2, (C2×C56).66C22, C28.46D413C2, C4.12D2813C2, C2.24(C287D4), C14.76(C4⋊D4), (C2×C28).421C23, C22.8(C4○D28), (C2×D28).111C22, C4.Dic7.16C22, (C7×M4(2)).36C22, (C2×Dic14).117C22, (C7×C8○D4)⋊1C2, (C2×C56⋊C2)⋊3C2, C4.117(C2×C7⋊D4), (C2×C14).6(C4○D4), (C7×C4○D4).36C22, (C2×C4).123(C22×D7), SmallGroup(448,675)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D4.3D28
C1C7C14C28C2×C28C2×D28C2×C56⋊C2 — D4.3D28
C7C14C2×C28 — D4.3D28
C1C2C2×C4C8○D4

Generators and relations for D4.3D28
 G = < a,b,c,d | a4=b2=1, c28=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c27 >

Subgroups: 572 in 104 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C56, C56, Dic14, D28, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, D4.3D4, C56⋊C2, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C2×Dic14, C2×D28, C7×C4○D4, C56.C4, C28.46D4, C4.12D28, C2×C56⋊C2, D4⋊D14, D4.9D14, C7×C8○D4, D4.3D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C7⋊D4, C22×D7, D4.3D4, C2×D28, C4○D28, C2×C7⋊D4, C287D4, D4.3D28

Smallest permutation representation of D4.3D28
On 112 points
Generators in S112
(1 15 29 43)(2 16 30 44)(3 17 31 45)(4 18 32 46)(5 19 33 47)(6 20 34 48)(7 21 35 49)(8 22 36 50)(9 23 37 51)(10 24 38 52)(11 25 39 53)(12 26 40 54)(13 27 41 55)(14 28 42 56)(57 99 85 71)(58 100 86 72)(59 101 87 73)(60 102 88 74)(61 103 89 75)(62 104 90 76)(63 105 91 77)(64 106 92 78)(65 107 93 79)(66 108 94 80)(67 109 95 81)(68 110 96 82)(69 111 97 83)(70 112 98 84)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 73)(35 74)(36 75)(37 76)(38 77)(39 78)(40 79)(41 80)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 28 29 56)(2 55 30 27)(3 26 31 54)(4 53 32 25)(5 24 33 52)(6 51 34 23)(7 22 35 50)(8 49 36 21)(9 20 37 48)(10 47 38 19)(11 18 39 46)(12 45 40 17)(13 16 41 44)(14 43 42 15)(57 92 85 64)(58 63 86 91)(59 90 87 62)(60 61 88 89)(65 84 93 112)(66 111 94 83)(67 82 95 110)(68 109 96 81)(69 80 97 108)(70 107 98 79)(71 78 99 106)(72 105 100 77)(73 76 101 104)(74 103 102 75)

G:=sub<Sym(112)| (1,15,29,43)(2,16,30,44)(3,17,31,45)(4,18,32,46)(5,19,33,47)(6,20,34,48)(7,21,35,49)(8,22,36,50)(9,23,37,51)(10,24,38,52)(11,25,39,53)(12,26,40,54)(13,27,41,55)(14,28,42,56)(57,99,85,71)(58,100,86,72)(59,101,87,73)(60,102,88,74)(61,103,89,75)(62,104,90,76)(63,105,91,77)(64,106,92,78)(65,107,93,79)(66,108,94,80)(67,109,95,81)(68,110,96,82)(69,111,97,83)(70,112,98,84), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28,29,56)(2,55,30,27)(3,26,31,54)(4,53,32,25)(5,24,33,52)(6,51,34,23)(7,22,35,50)(8,49,36,21)(9,20,37,48)(10,47,38,19)(11,18,39,46)(12,45,40,17)(13,16,41,44)(14,43,42,15)(57,92,85,64)(58,63,86,91)(59,90,87,62)(60,61,88,89)(65,84,93,112)(66,111,94,83)(67,82,95,110)(68,109,96,81)(69,80,97,108)(70,107,98,79)(71,78,99,106)(72,105,100,77)(73,76,101,104)(74,103,102,75)>;

G:=Group( (1,15,29,43)(2,16,30,44)(3,17,31,45)(4,18,32,46)(5,19,33,47)(6,20,34,48)(7,21,35,49)(8,22,36,50)(9,23,37,51)(10,24,38,52)(11,25,39,53)(12,26,40,54)(13,27,41,55)(14,28,42,56)(57,99,85,71)(58,100,86,72)(59,101,87,73)(60,102,88,74)(61,103,89,75)(62,104,90,76)(63,105,91,77)(64,106,92,78)(65,107,93,79)(66,108,94,80)(67,109,95,81)(68,110,96,82)(69,111,97,83)(70,112,98,84), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28,29,56)(2,55,30,27)(3,26,31,54)(4,53,32,25)(5,24,33,52)(6,51,34,23)(7,22,35,50)(8,49,36,21)(9,20,37,48)(10,47,38,19)(11,18,39,46)(12,45,40,17)(13,16,41,44)(14,43,42,15)(57,92,85,64)(58,63,86,91)(59,90,87,62)(60,61,88,89)(65,84,93,112)(66,111,94,83)(67,82,95,110)(68,109,96,81)(69,80,97,108)(70,107,98,79)(71,78,99,106)(72,105,100,77)(73,76,101,104)(74,103,102,75) );

G=PermutationGroup([[(1,15,29,43),(2,16,30,44),(3,17,31,45),(4,18,32,46),(5,19,33,47),(6,20,34,48),(7,21,35,49),(8,22,36,50),(9,23,37,51),(10,24,38,52),(11,25,39,53),(12,26,40,54),(13,27,41,55),(14,28,42,56),(57,99,85,71),(58,100,86,72),(59,101,87,73),(60,102,88,74),(61,103,89,75),(62,104,90,76),(63,105,91,77),(64,106,92,78),(65,107,93,79),(66,108,94,80),(67,109,95,81),(68,110,96,82),(69,111,97,83),(70,112,98,84)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,73),(35,74),(36,75),(37,76),(38,77),(39,78),(40,79),(41,80),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,28,29,56),(2,55,30,27),(3,26,31,54),(4,53,32,25),(5,24,33,52),(6,51,34,23),(7,22,35,50),(8,49,36,21),(9,20,37,48),(10,47,38,19),(11,18,39,46),(12,45,40,17),(13,16,41,44),(14,43,42,15),(57,92,85,64),(58,63,86,91),(59,90,87,62),(60,61,88,89),(65,84,93,112),(66,111,94,83),(67,82,95,110),(68,109,96,81),(69,80,97,108),(70,107,98,79),(71,78,99,106),(72,105,100,77),(73,76,101,104),(74,103,102,75)]])

76 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122224444777888888814141414···1428···2828···2856···5656···56
size112456224562222244456562224···42···24···42···24···4

76 irreducible representations

dim1111111122222222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C7⋊D4D28D28C4○D28D4.3D4D4.3D28
kernelD4.3D28C56.C4C28.46D4C4.12D28C2×C56⋊C2D4⋊D14D4.9D14C7×C8○D4C56C7×D4C7×Q8C8○D4C2×C14C2×C8M4(2)C4○D4C8D4Q8C22C7C1
# reps1111111121132333126612212

Matrix representation of D4.3D28 in GL6(𝔽113)

11200000
01120000
00011200
001000
000001
00001120
,
100000
21120000
000001
00001120
00011200
001000
,
9700000
9070000
001310000
00131300
000013100
00001313
,
97160000
90160000
001310000
0010010000
0000100100
000010013

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0],[1,2,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112,0,0,0,0,1,0,0,0],[97,90,0,0,0,0,0,7,0,0,0,0,0,0,13,13,0,0,0,0,100,13,0,0,0,0,0,0,13,13,0,0,0,0,100,13],[97,90,0,0,0,0,16,16,0,0,0,0,0,0,13,100,0,0,0,0,100,100,0,0,0,0,0,0,100,100,0,0,0,0,100,13] >;

D4.3D28 in GAP, Magma, Sage, TeX

D_4._3D_{28}
% in TeX

G:=Group("D4.3D28");
// GroupNames label

G:=SmallGroup(448,675);
// by ID

G=gap.SmallGroup(448,675);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,254,1123,297,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^28=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^27>;
// generators/relations

׿
×
𝔽