Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=D6

Direct product G=N×Q with N=C3×Q8 and Q=D6
dρLabelID
S3×C6×Q896S3xC6xQ8288,995

Semidirect products G=N:Q with N=C3×Q8 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊D6 = S3×GL2(𝔽3)φ: D6/C1D6 ⊆ Out C3×Q8244(C3xQ8):D6288,851
(C3×Q8)⋊2D6 = C2×C6.6S4φ: D6/C2S3 ⊆ Out C3×Q848(C3xQ8):2D6288,911
(C3×Q8)⋊3D6 = C6×GL2(𝔽3)φ: D6/C2S3 ⊆ Out C3×Q848(C3xQ8):3D6288,900
(C3×Q8)⋊4D6 = D126D6φ: D6/C3C22 ⊆ Out C3×Q8488+(C3xQ8):4D6288,587
(C3×Q8)⋊5D6 = D12.9D6φ: D6/C3C22 ⊆ Out C3×Q8488-(C3xQ8):5D6288,588
(C3×Q8)⋊6D6 = D12.10D6φ: D6/C3C22 ⊆ Out C3×Q8488+(C3xQ8):6D6288,589
(C3×Q8)⋊7D6 = SD16×C3⋊S3φ: D6/C3C22 ⊆ Out C3×Q872(C3xQ8):7D6288,770
(C3×Q8)⋊8D6 = C247D6φ: D6/C3C22 ⊆ Out C3×Q872(C3xQ8):8D6288,771
(C3×Q8)⋊9D6 = S3×Q82S3φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8):9D6288,586
(C3×Q8)⋊10D6 = S32×Q8φ: D6/S3C2 ⊆ Out C3×Q8488-(C3xQ8):10D6288,965
(C3×Q8)⋊11D6 = S3×Q83S3φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8):11D6288,966
(C3×Q8)⋊12D6 = D1215D6φ: D6/S3C2 ⊆ Out C3×Q8488-(C3xQ8):12D6288,967
(C3×Q8)⋊13D6 = D1216D6φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8):13D6288,968
(C3×Q8)⋊14D6 = C3×S3×SD16φ: D6/S3C2 ⊆ Out C3×Q8484(C3xQ8):14D6288,684
(C3×Q8)⋊15D6 = C3×Q83D6φ: D6/S3C2 ⊆ Out C3×Q8484(C3xQ8):15D6288,685
(C3×Q8)⋊16D6 = C2×C3211SD16φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8):16D6288,798
(C3×Q8)⋊17D6 = C62.73D4φ: D6/C6C2 ⊆ Out C3×Q872(C3xQ8):17D6288,806
(C3×Q8)⋊18D6 = C2×Q8×C3⋊S3φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8):18D6288,1010
(C3×Q8)⋊19D6 = C2×C12.26D6φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8):19D6288,1011
(C3×Q8)⋊20D6 = C4○D4×C3⋊S3φ: D6/C6C2 ⊆ Out C3×Q872(C3xQ8):20D6288,1013
(C3×Q8)⋊21D6 = C62.154C23φ: D6/C6C2 ⊆ Out C3×Q872(C3xQ8):21D6288,1014
(C3×Q8)⋊22D6 = C6×Q82S3φ: D6/C6C2 ⊆ Out C3×Q896(C3xQ8):22D6288,712
(C3×Q8)⋊23D6 = C3×D4⋊D6φ: D6/C6C2 ⊆ Out C3×Q8484(C3xQ8):23D6288,720
(C3×Q8)⋊24D6 = C6×Q83S3φ: trivial image96(C3xQ8):24D6288,996
(C3×Q8)⋊25D6 = C3×S3×C4○D4φ: trivial image484(C3xQ8):25D6288,998
(C3×Q8)⋊26D6 = C3×D4○D12φ: trivial image484(C3xQ8):26D6288,999

Non-split extensions G=N.Q with N=C3×Q8 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×Q8).1D6 = CSU2(𝔽3)⋊S3φ: D6/C1D6 ⊆ Out C3×Q8964(C3xQ8).1D6288,844
(C3×Q8).2D6 = Dic3.4S4φ: D6/C1D6 ⊆ Out C3×Q8484(C3xQ8).2D6288,845
(C3×Q8).3D6 = Dic3.5S4φ: D6/C1D6 ⊆ Out C3×Q8484+(C3xQ8).3D6288,846
(C3×Q8).4D6 = GL2(𝔽3)⋊S3φ: D6/C1D6 ⊆ Out C3×Q8484+(C3xQ8).4D6288,847
(C3×Q8).5D6 = S3×CSU2(𝔽3)φ: D6/C1D6 ⊆ Out C3×Q8484-(C3xQ8).5D6288,848
(C3×Q8).6D6 = D6.S4φ: D6/C1D6 ⊆ Out C3×Q8484-(C3xQ8).6D6288,849
(C3×Q8).7D6 = D6.2S4φ: D6/C1D6 ⊆ Out C3×Q8484(C3xQ8).7D6288,850
(C3×Q8).8D6 = C2×Q8.D9φ: D6/C2S3 ⊆ Out C3×Q8288(C3xQ8).8D6288,335
(C3×Q8).9D6 = C2×Q8⋊D9φ: D6/C2S3 ⊆ Out C3×Q8144(C3xQ8).9D6288,336
(C3×Q8).10D6 = Q8.D18φ: D6/C2S3 ⊆ Out C3×Q81444(C3xQ8).10D6288,337
(C3×Q8).11D6 = C12.3S4φ: D6/C2S3 ⊆ Out C3×Q81444-(C3xQ8).11D6288,338
(C3×Q8).12D6 = C12.11S4φ: D6/C2S3 ⊆ Out C3×Q81444(C3xQ8).12D6288,339
(C3×Q8).13D6 = C12.4S4φ: D6/C2S3 ⊆ Out C3×Q8724+(C3xQ8).13D6288,340
(C3×Q8).14D6 = C2×C6.5S4φ: D6/C2S3 ⊆ Out C3×Q896(C3xQ8).14D6288,910
(C3×Q8).15D6 = SL2(𝔽3).D6φ: D6/C2S3 ⊆ Out C3×Q8484(C3xQ8).15D6288,912
(C3×Q8).16D6 = C12.6S4φ: D6/C2S3 ⊆ Out C3×Q8964-(C3xQ8).16D6288,913
(C3×Q8).17D6 = C12.14S4φ: D6/C2S3 ⊆ Out C3×Q8484(C3xQ8).17D6288,914
(C3×Q8).18D6 = C12.7S4φ: D6/C2S3 ⊆ Out C3×Q8484+(C3xQ8).18D6288,915
(C3×Q8).19D6 = C6×CSU2(𝔽3)φ: D6/C2S3 ⊆ Out C3×Q896(C3xQ8).19D6288,899
(C3×Q8).20D6 = C3×Q8.D6φ: D6/C2S3 ⊆ Out C3×Q8484(C3xQ8).20D6288,901
(C3×Q8).21D6 = C3×C4.S4φ: D6/C2S3 ⊆ Out C3×Q8964(C3xQ8).21D6288,902
(C3×Q8).22D6 = C3×C4.6S4φ: D6/C2S3 ⊆ Out C3×Q8482(C3xQ8).22D6288,903
(C3×Q8).23D6 = C3×C4.3S4φ: D6/C2S3 ⊆ Out C3×Q8484(C3xQ8).23D6288,904
(C3×Q8).24D6 = SD16×D9φ: D6/C3C22 ⊆ Out C3×Q8724(C3xQ8).24D6288,123
(C3×Q8).25D6 = D72⋊C2φ: D6/C3C22 ⊆ Out C3×Q8724+(C3xQ8).25D6288,124
(C3×Q8).26D6 = SD16⋊D9φ: D6/C3C22 ⊆ Out C3×Q81444-(C3xQ8).26D6288,125
(C3×Q8).27D6 = SD163D9φ: D6/C3C22 ⊆ Out C3×Q81444(C3xQ8).27D6288,126
(C3×Q8).28D6 = Q16×D9φ: D6/C3C22 ⊆ Out C3×Q81444-(C3xQ8).28D6288,127
(C3×Q8).29D6 = Q16⋊D9φ: D6/C3C22 ⊆ Out C3×Q81444(C3xQ8).29D6288,128
(C3×Q8).30D6 = D725C2φ: D6/C3C22 ⊆ Out C3×Q81444+(C3xQ8).30D6288,129
(C3×Q8).31D6 = Dic6.9D6φ: D6/C3C22 ⊆ Out C3×Q8488-(C3xQ8).31D6288,592
(C3×Q8).32D6 = Dic6.10D6φ: D6/C3C22 ⊆ Out C3×Q8488+(C3xQ8).32D6288,593
(C3×Q8).33D6 = D12.24D6φ: D6/C3C22 ⊆ Out C3×Q8968-(C3xQ8).33D6288,594
(C3×Q8).34D6 = D12.14D6φ: D6/C3C22 ⊆ Out C3×Q8488+(C3xQ8).34D6288,598
(C3×Q8).35D6 = D12.15D6φ: D6/C3C22 ⊆ Out C3×Q8488-(C3xQ8).35D6288,599
(C3×Q8).36D6 = C24.32D6φ: D6/C3C22 ⊆ Out C3×Q8144(C3xQ8).36D6288,772
(C3×Q8).37D6 = C24.40D6φ: D6/C3C22 ⊆ Out C3×Q8144(C3xQ8).37D6288,773
(C3×Q8).38D6 = Q16×C3⋊S3φ: D6/C3C22 ⊆ Out C3×Q8144(C3xQ8).38D6288,774
(C3×Q8).39D6 = C24.35D6φ: D6/C3C22 ⊆ Out C3×Q8144(C3xQ8).39D6288,775
(C3×Q8).40D6 = C24.28D6φ: D6/C3C22 ⊆ Out C3×Q8144(C3xQ8).40D6288,776
(C3×Q8).41D6 = S3×C3⋊Q16φ: D6/S3C2 ⊆ Out C3×Q8968-(C3xQ8).41D6288,590
(C3×Q8).42D6 = D12.11D6φ: D6/S3C2 ⊆ Out C3×Q8968-(C3xQ8).42D6288,591
(C3×Q8).43D6 = D12.12D6φ: D6/S3C2 ⊆ Out C3×Q8968-(C3xQ8).43D6288,595
(C3×Q8).44D6 = Dic6.22D6φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8).44D6288,596
(C3×Q8).45D6 = D12.13D6φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8).45D6288,597
(C3×Q8).46D6 = D12.25D6φ: D6/S3C2 ⊆ Out C3×Q8488-(C3xQ8).46D6288,963
(C3×Q8).47D6 = Dic6.26D6φ: D6/S3C2 ⊆ Out C3×Q8488+(C3xQ8).47D6288,964
(C3×Q8).48D6 = C3×D4.D6φ: D6/S3C2 ⊆ Out C3×Q8484(C3xQ8).48D6288,686
(C3×Q8).49D6 = C3×Q8.7D6φ: D6/S3C2 ⊆ Out C3×Q8484(C3xQ8).49D6288,687
(C3×Q8).50D6 = C3×S3×Q16φ: D6/S3C2 ⊆ Out C3×Q8964(C3xQ8).50D6288,688
(C3×Q8).51D6 = C3×Q16⋊S3φ: D6/S3C2 ⊆ Out C3×Q8964(C3xQ8).51D6288,689
(C3×Q8).52D6 = C3×D24⋊C2φ: D6/S3C2 ⊆ Out C3×Q8964(C3xQ8).52D6288,690
(C3×Q8).53D6 = C2×C9⋊Q16φ: D6/C6C2 ⊆ Out C3×Q8288(C3xQ8).53D6288,151
(C3×Q8).54D6 = C2×Q82D9φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).54D6288,152
(C3×Q8).55D6 = C36.C23φ: D6/C6C2 ⊆ Out C3×Q81444(C3xQ8).55D6288,153
(C3×Q8).56D6 = D4.D18φ: D6/C6C2 ⊆ Out C3×Q81444-(C3xQ8).56D6288,159
(C3×Q8).57D6 = D4⋊D18φ: D6/C6C2 ⊆ Out C3×Q8724+(C3xQ8).57D6288,160
(C3×Q8).58D6 = D4.9D18φ: D6/C6C2 ⊆ Out C3×Q81444(C3xQ8).58D6288,161
(C3×Q8).59D6 = C2×Q8×D9φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).59D6288,359
(C3×Q8).60D6 = C2×Q83D9φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).60D6288,360
(C3×Q8).61D6 = Q8.15D18φ: D6/C6C2 ⊆ Out C3×Q81444(C3xQ8).61D6288,361
(C3×Q8).62D6 = C4○D4×D9φ: D6/C6C2 ⊆ Out C3×Q8724(C3xQ8).62D6288,362
(C3×Q8).63D6 = D48D18φ: D6/C6C2 ⊆ Out C3×Q8724+(C3xQ8).63D6288,363
(C3×Q8).64D6 = D4.10D18φ: D6/C6C2 ⊆ Out C3×Q81444-(C3xQ8).64D6288,364
(C3×Q8).65D6 = C62.134D4φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).65D6288,799
(C3×Q8).66D6 = C2×C327Q16φ: D6/C6C2 ⊆ Out C3×Q8288(C3xQ8).66D6288,800
(C3×Q8).67D6 = C62.74D4φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).67D6288,807
(C3×Q8).68D6 = C62.75D4φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).68D6288,808
(C3×Q8).69D6 = C3272- 1+4φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).69D6288,1012
(C3×Q8).70D6 = C3292- 1+4φ: D6/C6C2 ⊆ Out C3×Q8144(C3xQ8).70D6288,1015
(C3×Q8).71D6 = C3×Q8.11D6φ: D6/C6C2 ⊆ Out C3×Q8484(C3xQ8).71D6288,713
(C3×Q8).72D6 = C6×C3⋊Q16φ: D6/C6C2 ⊆ Out C3×Q896(C3xQ8).72D6288,714
(C3×Q8).73D6 = C3×Q8.13D6φ: D6/C6C2 ⊆ Out C3×Q8484(C3xQ8).73D6288,721
(C3×Q8).74D6 = C3×Q8.14D6φ: D6/C6C2 ⊆ Out C3×Q8484(C3xQ8).74D6288,722
(C3×Q8).75D6 = C3×Q8.15D6φ: trivial image484(C3xQ8).75D6288,997
(C3×Q8).76D6 = C3×Q8○D12φ: trivial image484(C3xQ8).76D6288,1000

׿
×
𝔽