Copied to
clipboard

?

G = C10.112+ (1+4)order 320 = 26·5

11st non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.112+ (1+4), C207D428C2, C42D2010C2, C4⋊C4.307D10, D208C410C2, C4.94(C4○D20), (C2×C10).58C24, C4.Dic1010C2, D10.13D42C2, C20.196(C4○D4), (C2×C20).619C23, (C22×C4).183D10, C2.14(D46D10), C22.92(C23×D5), (C2×D20).142C22, C4⋊Dic5.194C22, (C2×Dic5).19C23, (C4×Dic5).74C22, (C22×D5).16C23, C23.229(C22×D5), (C22×C10).407C23, (C22×C20).220C22, C51(C22.47C24), C22.11(Q82D5), C23.D5.143C22, D10⋊C4.142C22, C10.D4.151C22, (C2×C4⋊C4)⋊23D5, (C10×C4⋊C4)⋊20C2, C4⋊C4⋊D52C2, (C4×C5⋊D4)⋊11C2, C4⋊C47D510C2, C10.25(C2×C4○D4), C2.27(C2×C4○D20), C2.9(C2×Q82D5), (C2×C4×D5).66C22, (C5×C4⋊C4).299C22, (C2×C4).146(C22×D5), (C2×C10).198(C4○D4), (C2×C5⋊D4).103C22, SmallGroup(320,1186)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.112+ (1+4)
C1C5C10C2×C10C22×D5C2×C4×D5C4⋊C47D5 — C10.112+ (1+4)
C5C2×C10 — C10.112+ (1+4)

Subgroups: 870 in 238 conjugacy classes, 99 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×10], C22, C22 [×2], C22 [×11], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×13], D4 [×10], C23, C23 [×3], D5 [×3], C10 [×3], C10 [×2], C42 [×3], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×6], C22×C4, C22×C4 [×2], C22×C4 [×3], C2×D4 [×6], Dic5 [×5], C20 [×2], C20 [×5], D10 [×9], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C42⋊C2, C4×D4 [×4], C4⋊D4 [×4], C22.D4 [×2], C42.C2, C422C2 [×2], C4×D5 [×4], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×2], C2×C20 [×4], C2×C20 [×4], C22×D5, C22×D5 [×2], C22×C10, C22.47C24, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×2], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×8], C23.D5, C5×C4⋊C4 [×2], C5×C4⋊C4 [×2], C2×C4×D5, C2×C4×D5 [×2], C2×D20, C2×D20 [×2], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, C22×C20 [×2], C4.Dic10, C4⋊C47D5, D208C4, D10.13D4 [×2], C42D20, C4⋊C4⋊D5 [×2], C4×C5⋊D4, C4×C5⋊D4 [×2], C207D4, C207D4 [×2], C10×C4⋊C4, C10.112+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.47C24, C4○D20 [×2], Q82D5 [×2], C23×D5, C2×C4○D20, D46D10, C2×Q82D5, C10.112+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=a5b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 90 30 76)(2 89 21 75)(3 88 22 74)(4 87 23 73)(5 86 24 72)(6 85 25 71)(7 84 26 80)(8 83 27 79)(9 82 28 78)(10 81 29 77)(11 105 151 91)(12 104 152 100)(13 103 153 99)(14 102 154 98)(15 101 155 97)(16 110 156 96)(17 109 157 95)(18 108 158 94)(19 107 159 93)(20 106 160 92)(31 56 45 70)(32 55 46 69)(33 54 47 68)(34 53 48 67)(35 52 49 66)(36 51 50 65)(37 60 41 64)(38 59 42 63)(39 58 43 62)(40 57 44 61)(111 136 125 150)(112 135 126 149)(113 134 127 148)(114 133 128 147)(115 132 129 146)(116 131 130 145)(117 140 121 144)(118 139 122 143)(119 138 123 142)(120 137 124 141)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 31)(7 32)(8 33)(9 34)(10 35)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 141)(18 142)(19 143)(20 144)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 96 30 110)(2 97 21 101)(3 98 22 102)(4 99 23 103)(5 100 24 104)(6 91 25 105)(7 92 26 106)(8 93 27 107)(9 94 28 108)(10 95 29 109)(11 71 151 85)(12 72 152 86)(13 73 153 87)(14 74 154 88)(15 75 155 89)(16 76 156 90)(17 77 157 81)(18 78 158 82)(19 79 159 83)(20 80 160 84)(31 111 45 125)(32 112 46 126)(33 113 47 127)(34 114 48 128)(35 115 49 129)(36 116 50 130)(37 117 41 121)(38 118 42 122)(39 119 43 123)(40 120 44 124)(51 131 65 145)(52 132 66 146)(53 133 67 147)(54 134 68 148)(55 135 69 149)(56 136 70 150)(57 137 61 141)(58 138 62 142)(59 139 63 143)(60 140 64 144)
(1 145 6 150)(2 146 7 141)(3 147 8 142)(4 148 9 143)(5 149 10 144)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)(21 132 26 137)(22 133 27 138)(23 134 28 139)(24 135 29 140)(25 136 30 131)(41 152 46 157)(42 153 47 158)(43 154 48 159)(44 155 49 160)(45 156 50 151)(51 105 56 110)(52 106 57 101)(53 107 58 102)(54 108 59 103)(55 109 60 104)(61 97 66 92)(62 98 67 93)(63 99 68 94)(64 100 69 95)(65 91 70 96)(71 125 76 130)(72 126 77 121)(73 127 78 122)(74 128 79 123)(75 129 80 124)(81 117 86 112)(82 118 87 113)(83 119 88 114)(84 120 89 115)(85 111 90 116)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,30,76)(2,89,21,75)(3,88,22,74)(4,87,23,73)(5,86,24,72)(6,85,25,71)(7,84,26,80)(8,83,27,79)(9,82,28,78)(10,81,29,77)(11,105,151,91)(12,104,152,100)(13,103,153,99)(14,102,154,98)(15,101,155,97)(16,110,156,96)(17,109,157,95)(18,108,158,94)(19,107,159,93)(20,106,160,92)(31,56,45,70)(32,55,46,69)(33,54,47,68)(34,53,48,67)(35,52,49,66)(36,51,50,65)(37,60,41,64)(38,59,42,63)(39,58,43,62)(40,57,44,61)(111,136,125,150)(112,135,126,149)(113,134,127,148)(114,133,128,147)(115,132,129,146)(116,131,130,145)(117,140,121,144)(118,139,122,143)(119,138,123,142)(120,137,124,141), (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,96,30,110)(2,97,21,101)(3,98,22,102)(4,99,23,103)(5,100,24,104)(6,91,25,105)(7,92,26,106)(8,93,27,107)(9,94,28,108)(10,95,29,109)(11,71,151,85)(12,72,152,86)(13,73,153,87)(14,74,154,88)(15,75,155,89)(16,76,156,90)(17,77,157,81)(18,78,158,82)(19,79,159,83)(20,80,160,84)(31,111,45,125)(32,112,46,126)(33,113,47,127)(34,114,48,128)(35,115,49,129)(36,116,50,130)(37,117,41,121)(38,118,42,122)(39,119,43,123)(40,120,44,124)(51,131,65,145)(52,132,66,146)(53,133,67,147)(54,134,68,148)(55,135,69,149)(56,136,70,150)(57,137,61,141)(58,138,62,142)(59,139,63,143)(60,140,64,144), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(21,132,26,137)(22,133,27,138)(23,134,28,139)(24,135,29,140)(25,136,30,131)(41,152,46,157)(42,153,47,158)(43,154,48,159)(44,155,49,160)(45,156,50,151)(51,105,56,110)(52,106,57,101)(53,107,58,102)(54,108,59,103)(55,109,60,104)(61,97,66,92)(62,98,67,93)(63,99,68,94)(64,100,69,95)(65,91,70,96)(71,125,76,130)(72,126,77,121)(73,127,78,122)(74,128,79,123)(75,129,80,124)(81,117,86,112)(82,118,87,113)(83,119,88,114)(84,120,89,115)(85,111,90,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,30,76)(2,89,21,75)(3,88,22,74)(4,87,23,73)(5,86,24,72)(6,85,25,71)(7,84,26,80)(8,83,27,79)(9,82,28,78)(10,81,29,77)(11,105,151,91)(12,104,152,100)(13,103,153,99)(14,102,154,98)(15,101,155,97)(16,110,156,96)(17,109,157,95)(18,108,158,94)(19,107,159,93)(20,106,160,92)(31,56,45,70)(32,55,46,69)(33,54,47,68)(34,53,48,67)(35,52,49,66)(36,51,50,65)(37,60,41,64)(38,59,42,63)(39,58,43,62)(40,57,44,61)(111,136,125,150)(112,135,126,149)(113,134,127,148)(114,133,128,147)(115,132,129,146)(116,131,130,145)(117,140,121,144)(118,139,122,143)(119,138,123,142)(120,137,124,141), (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,96,30,110)(2,97,21,101)(3,98,22,102)(4,99,23,103)(5,100,24,104)(6,91,25,105)(7,92,26,106)(8,93,27,107)(9,94,28,108)(10,95,29,109)(11,71,151,85)(12,72,152,86)(13,73,153,87)(14,74,154,88)(15,75,155,89)(16,76,156,90)(17,77,157,81)(18,78,158,82)(19,79,159,83)(20,80,160,84)(31,111,45,125)(32,112,46,126)(33,113,47,127)(34,114,48,128)(35,115,49,129)(36,116,50,130)(37,117,41,121)(38,118,42,122)(39,119,43,123)(40,120,44,124)(51,131,65,145)(52,132,66,146)(53,133,67,147)(54,134,68,148)(55,135,69,149)(56,136,70,150)(57,137,61,141)(58,138,62,142)(59,139,63,143)(60,140,64,144), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40)(21,132,26,137)(22,133,27,138)(23,134,28,139)(24,135,29,140)(25,136,30,131)(41,152,46,157)(42,153,47,158)(43,154,48,159)(44,155,49,160)(45,156,50,151)(51,105,56,110)(52,106,57,101)(53,107,58,102)(54,108,59,103)(55,109,60,104)(61,97,66,92)(62,98,67,93)(63,99,68,94)(64,100,69,95)(65,91,70,96)(71,125,76,130)(72,126,77,121)(73,127,78,122)(74,128,79,123)(75,129,80,124)(81,117,86,112)(82,118,87,113)(83,119,88,114)(84,120,89,115)(85,111,90,116) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,90,30,76),(2,89,21,75),(3,88,22,74),(4,87,23,73),(5,86,24,72),(6,85,25,71),(7,84,26,80),(8,83,27,79),(9,82,28,78),(10,81,29,77),(11,105,151,91),(12,104,152,100),(13,103,153,99),(14,102,154,98),(15,101,155,97),(16,110,156,96),(17,109,157,95),(18,108,158,94),(19,107,159,93),(20,106,160,92),(31,56,45,70),(32,55,46,69),(33,54,47,68),(34,53,48,67),(35,52,49,66),(36,51,50,65),(37,60,41,64),(38,59,42,63),(39,58,43,62),(40,57,44,61),(111,136,125,150),(112,135,126,149),(113,134,127,148),(114,133,128,147),(115,132,129,146),(116,131,130,145),(117,140,121,144),(118,139,122,143),(119,138,123,142),(120,137,124,141)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,31),(7,32),(8,33),(9,34),(10,35),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,141),(18,142),(19,143),(20,144),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,96,30,110),(2,97,21,101),(3,98,22,102),(4,99,23,103),(5,100,24,104),(6,91,25,105),(7,92,26,106),(8,93,27,107),(9,94,28,108),(10,95,29,109),(11,71,151,85),(12,72,152,86),(13,73,153,87),(14,74,154,88),(15,75,155,89),(16,76,156,90),(17,77,157,81),(18,78,158,82),(19,79,159,83),(20,80,160,84),(31,111,45,125),(32,112,46,126),(33,113,47,127),(34,114,48,128),(35,115,49,129),(36,116,50,130),(37,117,41,121),(38,118,42,122),(39,119,43,123),(40,120,44,124),(51,131,65,145),(52,132,66,146),(53,133,67,147),(54,134,68,148),(55,135,69,149),(56,136,70,150),(57,137,61,141),(58,138,62,142),(59,139,63,143),(60,140,64,144)], [(1,145,6,150),(2,146,7,141),(3,147,8,142),(4,148,9,143),(5,149,10,144),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40),(21,132,26,137),(22,133,27,138),(23,134,28,139),(24,135,29,140),(25,136,30,131),(41,152,46,157),(42,153,47,158),(43,154,48,159),(44,155,49,160),(45,156,50,151),(51,105,56,110),(52,106,57,101),(53,107,58,102),(54,108,59,103),(55,109,60,104),(61,97,66,92),(62,98,67,93),(63,99,68,94),(64,100,69,95),(65,91,70,96),(71,125,76,130),(72,126,77,121),(73,127,78,122),(74,128,79,123),(75,129,80,124),(81,117,86,112),(82,118,87,113),(83,119,88,114),(84,120,89,115),(85,111,90,116)])

Matrix representation G ⊆ GL4(𝔽41) generated by

343400
7100
00400
00040
,
11900
143000
0090
0009
,
174000
12400
0010
0001
,
40000
04000
00404
00201
,
9000
0900
003236
0009
G:=sub<GL(4,GF(41))| [34,7,0,0,34,1,0,0,0,0,40,0,0,0,0,40],[11,14,0,0,9,30,0,0,0,0,9,0,0,0,0,9],[17,1,0,0,40,24,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,40,20,0,0,4,1],[9,0,0,0,0,9,0,0,0,0,32,0,0,0,36,9] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10N20A···20X
order1222222224···444444444445510···1020···20
size1111222020202···244410101010202020222···24···4

65 irreducible representations

dim1111111111222222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10C4○D202+ (1+4)Q82D5D46D10
kernelC10.112+ (1+4)C4.Dic10C4⋊C47D5D208C4D10.13D4C42D20C4⋊C4⋊D5C4×C5⋊D4C207D4C10×C4⋊C4C2×C4⋊C4C20C2×C10C4⋊C4C22×C4C4C10C22C2
# reps11112123312448616144

In GAP, Magma, Sage, TeX

C_{10}._{11}2_+^{(1+4)}
% in TeX

G:=Group("C10.11ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1186);
// by ID

G=gap.SmallGroup(320,1186);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,100,1571,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^5*b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽