Copied to
clipboard

?

G = C2×D4.9D10order 320 = 26·5

Direct product of C2 and D4.9D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.9D10, C20.36C24, Dic10.31C23, C4○D4.41D10, (C2×C20).219D4, C20.428(C2×D4), C4.36(C23×D5), (C2×D4).233D10, C105(C8.C22), C52C8.15C23, D4.D518C22, (C2×Q8).191D10, (C5×D4).24C23, C5⋊Q1617C22, D4.24(C22×D5), Q8.24(C22×D5), (C5×Q8).24C23, (C2×C20).558C23, (C22×C10).125D4, (C22×C4).283D10, C10.161(C22×D4), C23.69(C5⋊D4), C4.Dic538C22, (C2×Dic10)⋊70C22, (C22×Dic10)⋊21C2, (D4×C10).273C22, (Q8×C10).238C22, (C22×C20).293C22, C56(C2×C8.C22), C4.31(C2×C5⋊D4), (C2×D4.D5)⋊31C2, (C2×C4○D4).10D5, (C2×C5⋊Q16)⋊31C2, (C2×C10).77(C2×D4), (C10×C4○D4).11C2, (C2×C4).96(C5⋊D4), (C2×C4.Dic5)⋊32C2, C2.34(C22×C5⋊D4), (C5×C4○D4).50C22, (C2×C4).247(C22×D5), C22.120(C2×C5⋊D4), (C2×C52C8).184C22, SmallGroup(320,1495)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D4.9D10
C1C5C10C20Dic10C2×Dic10C22×Dic10 — C2×D4.9D10
C5C10C20 — C2×D4.9D10

Subgroups: 734 in 258 conjugacy classes, 111 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×2], C22 [×6], C5, C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×11], D4 [×2], D4 [×5], Q8 [×2], Q8 [×11], C23, C23, C10, C10 [×2], C10 [×4], C2×C8 [×2], M4(2) [×4], SD16 [×8], Q16 [×8], C22×C4, C22×C4 [×2], C2×D4, C2×D4, C2×Q8, C2×Q8 [×9], C4○D4 [×4], C4○D4 [×2], Dic5 [×4], C20 [×2], C20 [×2], C20 [×2], C2×C10, C2×C10 [×2], C2×C10 [×6], C2×M4(2), C2×SD16 [×2], C2×Q16 [×2], C8.C22 [×8], C22×Q8, C2×C4○D4, C52C8 [×4], Dic10 [×4], Dic10 [×6], C2×Dic5 [×6], C2×C20 [×2], C2×C20 [×4], C2×C20 [×5], C5×D4 [×2], C5×D4 [×5], C5×Q8 [×2], C5×Q8, C22×C10, C22×C10, C2×C8.C22, C2×C52C8 [×2], C4.Dic5 [×4], D4.D5 [×8], C5⋊Q16 [×8], C2×Dic10 [×6], C2×Dic10 [×3], C22×Dic5, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4 [×4], C5×C4○D4 [×2], C2×C4.Dic5, C2×D4.D5 [×2], C2×C5⋊Q16 [×2], D4.9D10 [×8], C22×Dic10, C10×C4○D4, C2×D4.9D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C8.C22 [×2], C22×D4, C5⋊D4 [×4], C22×D5 [×7], C2×C8.C22, C2×C5⋊D4 [×6], C23×D5, D4.9D10 [×2], C22×C5⋊D4, C2×D4.9D10

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d10=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b2c, ece-1=b-1c, ede-1=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 46)(2 47)(3 48)(4 49)(5 50)(6 41)(7 42)(8 43)(9 44)(10 45)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 110)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 89)(62 90)(63 81)(64 82)(65 83)(66 84)(67 85)(68 86)(69 87)(70 88)(91 116)(92 117)(93 118)(94 119)(95 120)(96 111)(97 112)(98 113)(99 114)(100 115)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 30 77 104)(2 21 78 105)(3 22 79 106)(4 23 80 107)(5 24 71 108)(6 25 72 109)(7 26 73 110)(8 27 74 101)(9 28 75 102)(10 29 76 103)(11 58 36 47)(12 59 37 48)(13 60 38 49)(14 51 39 50)(15 52 40 41)(16 53 31 42)(17 54 32 43)(18 55 33 44)(19 56 34 45)(20 57 35 46)(61 157 114 130)(62 158 115 121)(63 159 116 122)(64 160 117 123)(65 151 118 124)(66 152 119 125)(67 153 120 126)(68 154 111 127)(69 155 112 128)(70 156 113 129)(81 149 91 132)(82 150 92 133)(83 141 93 134)(84 142 94 135)(85 143 95 136)(86 144 96 137)(87 145 97 138)(88 146 98 139)(89 147 99 140)(90 148 100 131)
(1 35)(2 11)(3 37)(4 13)(5 39)(6 15)(7 31)(8 17)(9 33)(10 19)(12 79)(14 71)(16 73)(18 75)(20 77)(21 47)(22 59)(23 49)(24 51)(25 41)(26 53)(27 43)(28 55)(29 45)(30 57)(32 74)(34 76)(36 78)(38 80)(40 72)(42 110)(44 102)(46 104)(48 106)(50 108)(52 109)(54 101)(56 103)(58 105)(60 107)(61 89)(62 100)(63 81)(64 92)(65 83)(66 94)(67 85)(68 96)(69 87)(70 98)(82 117)(84 119)(86 111)(88 113)(90 115)(91 116)(93 118)(95 120)(97 112)(99 114)(121 131)(122 149)(123 133)(124 141)(125 135)(126 143)(127 137)(128 145)(129 139)(130 147)(132 159)(134 151)(136 153)(138 155)(140 157)(142 152)(144 154)(146 156)(148 158)(150 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 152 77 125)(2 151 78 124)(3 160 79 123)(4 159 80 122)(5 158 71 121)(6 157 72 130)(7 156 73 129)(8 155 74 128)(9 154 75 127)(10 153 76 126)(11 83 36 93)(12 82 37 92)(13 81 38 91)(14 90 39 100)(15 89 40 99)(16 88 31 98)(17 87 32 97)(18 86 33 96)(19 85 34 95)(20 84 35 94)(21 65 105 118)(22 64 106 117)(23 63 107 116)(24 62 108 115)(25 61 109 114)(26 70 110 113)(27 69 101 112)(28 68 102 111)(29 67 103 120)(30 66 104 119)(41 147 52 140)(42 146 53 139)(43 145 54 138)(44 144 55 137)(45 143 56 136)(46 142 57 135)(47 141 58 134)(48 150 59 133)(49 149 60 132)(50 148 51 131)

G:=sub<Sym(160)| (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,110)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,30,77,104)(2,21,78,105)(3,22,79,106)(4,23,80,107)(5,24,71,108)(6,25,72,109)(7,26,73,110)(8,27,74,101)(9,28,75,102)(10,29,76,103)(11,58,36,47)(12,59,37,48)(13,60,38,49)(14,51,39,50)(15,52,40,41)(16,53,31,42)(17,54,32,43)(18,55,33,44)(19,56,34,45)(20,57,35,46)(61,157,114,130)(62,158,115,121)(63,159,116,122)(64,160,117,123)(65,151,118,124)(66,152,119,125)(67,153,120,126)(68,154,111,127)(69,155,112,128)(70,156,113,129)(81,149,91,132)(82,150,92,133)(83,141,93,134)(84,142,94,135)(85,143,95,136)(86,144,96,137)(87,145,97,138)(88,146,98,139)(89,147,99,140)(90,148,100,131), (1,35)(2,11)(3,37)(4,13)(5,39)(6,15)(7,31)(8,17)(9,33)(10,19)(12,79)(14,71)(16,73)(18,75)(20,77)(21,47)(22,59)(23,49)(24,51)(25,41)(26,53)(27,43)(28,55)(29,45)(30,57)(32,74)(34,76)(36,78)(38,80)(40,72)(42,110)(44,102)(46,104)(48,106)(50,108)(52,109)(54,101)(56,103)(58,105)(60,107)(61,89)(62,100)(63,81)(64,92)(65,83)(66,94)(67,85)(68,96)(69,87)(70,98)(82,117)(84,119)(86,111)(88,113)(90,115)(91,116)(93,118)(95,120)(97,112)(99,114)(121,131)(122,149)(123,133)(124,141)(125,135)(126,143)(127,137)(128,145)(129,139)(130,147)(132,159)(134,151)(136,153)(138,155)(140,157)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,152,77,125)(2,151,78,124)(3,160,79,123)(4,159,80,122)(5,158,71,121)(6,157,72,130)(7,156,73,129)(8,155,74,128)(9,154,75,127)(10,153,76,126)(11,83,36,93)(12,82,37,92)(13,81,38,91)(14,90,39,100)(15,89,40,99)(16,88,31,98)(17,87,32,97)(18,86,33,96)(19,85,34,95)(20,84,35,94)(21,65,105,118)(22,64,106,117)(23,63,107,116)(24,62,108,115)(25,61,109,114)(26,70,110,113)(27,69,101,112)(28,68,102,111)(29,67,103,120)(30,66,104,119)(41,147,52,140)(42,146,53,139)(43,145,54,138)(44,144,55,137)(45,143,56,136)(46,142,57,135)(47,141,58,134)(48,150,59,133)(49,149,60,132)(50,148,51,131)>;

G:=Group( (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,110)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,30,77,104)(2,21,78,105)(3,22,79,106)(4,23,80,107)(5,24,71,108)(6,25,72,109)(7,26,73,110)(8,27,74,101)(9,28,75,102)(10,29,76,103)(11,58,36,47)(12,59,37,48)(13,60,38,49)(14,51,39,50)(15,52,40,41)(16,53,31,42)(17,54,32,43)(18,55,33,44)(19,56,34,45)(20,57,35,46)(61,157,114,130)(62,158,115,121)(63,159,116,122)(64,160,117,123)(65,151,118,124)(66,152,119,125)(67,153,120,126)(68,154,111,127)(69,155,112,128)(70,156,113,129)(81,149,91,132)(82,150,92,133)(83,141,93,134)(84,142,94,135)(85,143,95,136)(86,144,96,137)(87,145,97,138)(88,146,98,139)(89,147,99,140)(90,148,100,131), (1,35)(2,11)(3,37)(4,13)(5,39)(6,15)(7,31)(8,17)(9,33)(10,19)(12,79)(14,71)(16,73)(18,75)(20,77)(21,47)(22,59)(23,49)(24,51)(25,41)(26,53)(27,43)(28,55)(29,45)(30,57)(32,74)(34,76)(36,78)(38,80)(40,72)(42,110)(44,102)(46,104)(48,106)(50,108)(52,109)(54,101)(56,103)(58,105)(60,107)(61,89)(62,100)(63,81)(64,92)(65,83)(66,94)(67,85)(68,96)(69,87)(70,98)(82,117)(84,119)(86,111)(88,113)(90,115)(91,116)(93,118)(95,120)(97,112)(99,114)(121,131)(122,149)(123,133)(124,141)(125,135)(126,143)(127,137)(128,145)(129,139)(130,147)(132,159)(134,151)(136,153)(138,155)(140,157)(142,152)(144,154)(146,156)(148,158)(150,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,152,77,125)(2,151,78,124)(3,160,79,123)(4,159,80,122)(5,158,71,121)(6,157,72,130)(7,156,73,129)(8,155,74,128)(9,154,75,127)(10,153,76,126)(11,83,36,93)(12,82,37,92)(13,81,38,91)(14,90,39,100)(15,89,40,99)(16,88,31,98)(17,87,32,97)(18,86,33,96)(19,85,34,95)(20,84,35,94)(21,65,105,118)(22,64,106,117)(23,63,107,116)(24,62,108,115)(25,61,109,114)(26,70,110,113)(27,69,101,112)(28,68,102,111)(29,67,103,120)(30,66,104,119)(41,147,52,140)(42,146,53,139)(43,145,54,138)(44,144,55,137)(45,143,56,136)(46,142,57,135)(47,141,58,134)(48,150,59,133)(49,149,60,132)(50,148,51,131) );

G=PermutationGroup([(1,46),(2,47),(3,48),(4,49),(5,50),(6,41),(7,42),(8,43),(9,44),(10,45),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,110),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,89),(62,90),(63,81),(64,82),(65,83),(66,84),(67,85),(68,86),(69,87),(70,88),(91,116),(92,117),(93,118),(94,119),(95,120),(96,111),(97,112),(98,113),(99,114),(100,115),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,30,77,104),(2,21,78,105),(3,22,79,106),(4,23,80,107),(5,24,71,108),(6,25,72,109),(7,26,73,110),(8,27,74,101),(9,28,75,102),(10,29,76,103),(11,58,36,47),(12,59,37,48),(13,60,38,49),(14,51,39,50),(15,52,40,41),(16,53,31,42),(17,54,32,43),(18,55,33,44),(19,56,34,45),(20,57,35,46),(61,157,114,130),(62,158,115,121),(63,159,116,122),(64,160,117,123),(65,151,118,124),(66,152,119,125),(67,153,120,126),(68,154,111,127),(69,155,112,128),(70,156,113,129),(81,149,91,132),(82,150,92,133),(83,141,93,134),(84,142,94,135),(85,143,95,136),(86,144,96,137),(87,145,97,138),(88,146,98,139),(89,147,99,140),(90,148,100,131)], [(1,35),(2,11),(3,37),(4,13),(5,39),(6,15),(7,31),(8,17),(9,33),(10,19),(12,79),(14,71),(16,73),(18,75),(20,77),(21,47),(22,59),(23,49),(24,51),(25,41),(26,53),(27,43),(28,55),(29,45),(30,57),(32,74),(34,76),(36,78),(38,80),(40,72),(42,110),(44,102),(46,104),(48,106),(50,108),(52,109),(54,101),(56,103),(58,105),(60,107),(61,89),(62,100),(63,81),(64,92),(65,83),(66,94),(67,85),(68,96),(69,87),(70,98),(82,117),(84,119),(86,111),(88,113),(90,115),(91,116),(93,118),(95,120),(97,112),(99,114),(121,131),(122,149),(123,133),(124,141),(125,135),(126,143),(127,137),(128,145),(129,139),(130,147),(132,159),(134,151),(136,153),(138,155),(140,157),(142,152),(144,154),(146,156),(148,158),(150,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,152,77,125),(2,151,78,124),(3,160,79,123),(4,159,80,122),(5,158,71,121),(6,157,72,130),(7,156,73,129),(8,155,74,128),(9,154,75,127),(10,153,76,126),(11,83,36,93),(12,82,37,92),(13,81,38,91),(14,90,39,100),(15,89,40,99),(16,88,31,98),(17,87,32,97),(18,86,33,96),(19,85,34,95),(20,84,35,94),(21,65,105,118),(22,64,106,117),(23,63,107,116),(24,62,108,115),(25,61,109,114),(26,70,110,113),(27,69,101,112),(28,68,102,111),(29,67,103,120),(30,66,104,119),(41,147,52,140),(42,146,53,139),(43,145,54,138),(44,144,55,137),(45,143,56,136),(46,142,57,135),(47,141,58,134),(48,150,59,133),(49,149,60,132),(50,148,51,131)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
004000000
000400000
000040000
000004000
000000400
000000040
,
10000000
01000000
004000000
000400000
000013200
0000234000
00002637137
00003132140
,
400000000
040000000
00100000
0017400000
000040900
00000100
0000255137
0000028040
,
135000000
66000000
004000000
000400000
000040020
0000179010
00000010
000011331332
,
10000000
640000000
0022360000
0031190000
0000119032
00003637200
000030848
000017212440

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,23,26,31,0,0,0,0,32,40,37,3,0,0,0,0,0,0,1,21,0,0,0,0,0,0,37,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,17,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,25,0,0,0,0,0,9,1,5,28,0,0,0,0,0,0,1,0,0,0,0,0,0,0,37,40],[1,6,0,0,0,0,0,0,35,6,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,17,0,11,0,0,0,0,0,9,0,33,0,0,0,0,2,0,1,13,0,0,0,0,0,10,0,32],[1,6,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,22,31,0,0,0,0,0,0,36,19,0,0,0,0,0,0,0,0,1,36,30,17,0,0,0,0,19,37,8,21,0,0,0,0,0,20,4,24,0,0,0,0,32,0,8,40] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10F10G···10R20A···20H20I···20T
order12222222444444444455888810···1010···1020···2020···20
size111122442222442020202022202020202···24···42···24···4

62 irreducible representations

dim111111122222222244
type++++++++++++++--
imageC1C2C2C2C2C2C2D4D4D5D10D10D10D10C5⋊D4C5⋊D4C8.C22D4.9D10
kernelC2×D4.9D10C2×C4.Dic5C2×D4.D5C2×C5⋊Q16D4.9D10C22×Dic10C10×C4○D4C2×C20C22×C10C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C2×C4C23C10C2
# reps1122811312222812428

In GAP, Magma, Sage, TeX

C_2\times D_4._9D_{10}
% in TeX

G:=Group("C2xD4.9D10");
// GroupNames label

G:=SmallGroup(320,1495);
// by ID

G=gap.SmallGroup(320,1495);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,675,297,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^10=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^2*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽