Copied to
clipboard

G = C85D20order 320 = 26·5

2nd semidirect product of C8 and D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C85D20, C4023D4, C207SD16, C42.260D10, (C4×C8)⋊12D5, (C4×C40)⋊17C2, C51(C85D4), C41(C40⋊C2), C202Q81C2, C4.30(C2×D20), (C2×C4).79D20, (C2×C20).376D4, C204D4.2C2, C20.273(C2×D4), (C2×C8).317D10, C10.4(C2×SD16), C10.3(C41D4), C2.5(C204D4), (C2×D20).3C22, C22.89(C2×D20), (C2×C40).389C22, (C4×C20).306C22, (C2×C20).722C23, (C2×Dic10).4C22, (C2×C40⋊C2)⋊7C2, C2.7(C2×C40⋊C2), (C2×C10).105(C2×D4), (C2×C4).665(C22×D5), SmallGroup(320,320)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C85D20
C1C5C10C20C2×C20C2×D20C204D4 — C85D20
C5C10C2×C20 — C85D20
C1C22C42C4×C8

Generators and relations for C85D20
 G = < a,b,c | a8=b20=c2=1, ab=ba, cac=a3, cbc=b-1 >

Subgroups: 782 in 142 conjugacy classes, 55 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C4×C8, C41D4, C4⋊Q8, C2×SD16, C40, Dic10, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C85D4, C40⋊C2, C4⋊Dic5, C4×C20, C2×C40, C2×Dic10, C2×D20, C2×D20, C4×C40, C202Q8, C204D4, C2×C40⋊C2, C85D20
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C41D4, C2×SD16, D20, C22×D5, C85D4, C40⋊C2, C2×D20, C204D4, C2×C40⋊C2, C85D20

Smallest permutation representation of C85D20
On 160 points
Generators in S160
(1 100 48 140 112 28 150 75)(2 81 49 121 113 29 151 76)(3 82 50 122 114 30 152 77)(4 83 51 123 115 31 153 78)(5 84 52 124 116 32 154 79)(6 85 53 125 117 33 155 80)(7 86 54 126 118 34 156 61)(8 87 55 127 119 35 157 62)(9 88 56 128 120 36 158 63)(10 89 57 129 101 37 159 64)(11 90 58 130 102 38 160 65)(12 91 59 131 103 39 141 66)(13 92 60 132 104 40 142 67)(14 93 41 133 105 21 143 68)(15 94 42 134 106 22 144 69)(16 95 43 135 107 23 145 70)(17 96 44 136 108 24 146 71)(18 97 45 137 109 25 147 72)(19 98 46 138 110 26 148 73)(20 99 47 139 111 27 149 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 61)(22 80)(23 79)(24 78)(25 77)(26 76)(27 75)(28 74)(29 73)(30 72)(31 71)(32 70)(33 69)(34 68)(35 67)(36 66)(37 65)(38 64)(39 63)(40 62)(41 156)(42 155)(43 154)(44 153)(45 152)(46 151)(47 150)(48 149)(49 148)(50 147)(51 146)(52 145)(53 144)(54 143)(55 142)(56 141)(57 160)(58 159)(59 158)(60 157)(81 138)(82 137)(83 136)(84 135)(85 134)(86 133)(87 132)(88 131)(89 130)(90 129)(91 128)(92 127)(93 126)(94 125)(95 124)(96 123)(97 122)(98 121)(99 140)(100 139)(101 102)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)

G:=sub<Sym(160)| (1,100,48,140,112,28,150,75)(2,81,49,121,113,29,151,76)(3,82,50,122,114,30,152,77)(4,83,51,123,115,31,153,78)(5,84,52,124,116,32,154,79)(6,85,53,125,117,33,155,80)(7,86,54,126,118,34,156,61)(8,87,55,127,119,35,157,62)(9,88,56,128,120,36,158,63)(10,89,57,129,101,37,159,64)(11,90,58,130,102,38,160,65)(12,91,59,131,103,39,141,66)(13,92,60,132,104,40,142,67)(14,93,41,133,105,21,143,68)(15,94,42,134,106,22,144,69)(16,95,43,135,107,23,145,70)(17,96,44,136,108,24,146,71)(18,97,45,137,109,25,147,72)(19,98,46,138,110,26,148,73)(20,99,47,139,111,27,149,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,61)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,144)(54,143)(55,142)(56,141)(57,160)(58,159)(59,158)(60,157)(81,138)(82,137)(83,136)(84,135)(85,134)(86,133)(87,132)(88,131)(89,130)(90,129)(91,128)(92,127)(93,126)(94,125)(95,124)(96,123)(97,122)(98,121)(99,140)(100,139)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)>;

G:=Group( (1,100,48,140,112,28,150,75)(2,81,49,121,113,29,151,76)(3,82,50,122,114,30,152,77)(4,83,51,123,115,31,153,78)(5,84,52,124,116,32,154,79)(6,85,53,125,117,33,155,80)(7,86,54,126,118,34,156,61)(8,87,55,127,119,35,157,62)(9,88,56,128,120,36,158,63)(10,89,57,129,101,37,159,64)(11,90,58,130,102,38,160,65)(12,91,59,131,103,39,141,66)(13,92,60,132,104,40,142,67)(14,93,41,133,105,21,143,68)(15,94,42,134,106,22,144,69)(16,95,43,135,107,23,145,70)(17,96,44,136,108,24,146,71)(18,97,45,137,109,25,147,72)(19,98,46,138,110,26,148,73)(20,99,47,139,111,27,149,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,61)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,156)(42,155)(43,154)(44,153)(45,152)(46,151)(47,150)(48,149)(49,148)(50,147)(51,146)(52,145)(53,144)(54,143)(55,142)(56,141)(57,160)(58,159)(59,158)(60,157)(81,138)(82,137)(83,136)(84,135)(85,134)(86,133)(87,132)(88,131)(89,130)(90,129)(91,128)(92,127)(93,126)(94,125)(95,124)(96,123)(97,122)(98,121)(99,140)(100,139)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112) );

G=PermutationGroup([[(1,100,48,140,112,28,150,75),(2,81,49,121,113,29,151,76),(3,82,50,122,114,30,152,77),(4,83,51,123,115,31,153,78),(5,84,52,124,116,32,154,79),(6,85,53,125,117,33,155,80),(7,86,54,126,118,34,156,61),(8,87,55,127,119,35,157,62),(9,88,56,128,120,36,158,63),(10,89,57,129,101,37,159,64),(11,90,58,130,102,38,160,65),(12,91,59,131,103,39,141,66),(13,92,60,132,104,40,142,67),(14,93,41,133,105,21,143,68),(15,94,42,134,106,22,144,69),(16,95,43,135,107,23,145,70),(17,96,44,136,108,24,146,71),(18,97,45,137,109,25,147,72),(19,98,46,138,110,26,148,73),(20,99,47,139,111,27,149,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,61),(22,80),(23,79),(24,78),(25,77),(26,76),(27,75),(28,74),(29,73),(30,72),(31,71),(32,70),(33,69),(34,68),(35,67),(36,66),(37,65),(38,64),(39,63),(40,62),(41,156),(42,155),(43,154),(44,153),(45,152),(46,151),(47,150),(48,149),(49,148),(50,147),(51,146),(52,145),(53,144),(54,143),(55,142),(56,141),(57,160),(58,159),(59,158),(60,157),(81,138),(82,137),(83,136),(84,135),(85,134),(86,133),(87,132),(88,131),(89,130),(90,129),(91,128),(92,127),(93,126),(94,125),(95,124),(96,123),(97,122),(98,121),(99,140),(100,139),(101,102),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112)]])

86 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H5A5B8A···8H10A···10F20A···20X40A···40AF
order1222224···444558···810···1020···2040···40
size111140402···24040222···22···22···22···2

86 irreducible representations

dim11111222222222
type++++++++++++
imageC1C2C2C2C2D4D4D5SD16D10D10D20D20C40⋊C2
kernelC85D20C4×C40C202Q8C204D4C2×C40⋊C2C40C2×C20C4×C8C20C42C2×C8C8C2×C4C4
# reps1111442282416832

Matrix representation of C85D20 in GL4(𝔽41) generated by

393400
271300
001410
00216
,
40000
04000
00272
002511
,
40000
8100
00302
002211
G:=sub<GL(4,GF(41))| [39,27,0,0,34,13,0,0,0,0,14,2,0,0,10,16],[40,0,0,0,0,40,0,0,0,0,27,25,0,0,2,11],[40,8,0,0,0,1,0,0,0,0,30,22,0,0,2,11] >;

C85D20 in GAP, Magma, Sage, TeX

C_8\rtimes_5D_{20}
% in TeX

G:=Group("C8:5D20");
// GroupNames label

G:=SmallGroup(320,320);
// by ID

G=gap.SmallGroup(320,320);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,58,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^8=b^20=c^2=1,a*b=b*a,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽