Copied to
clipboard

?

G = D202C8order 320 = 26·5

2nd semidirect product of D20 and C8 acting via C8/C2=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D202C8, C5⋊C89D4, C52(C8×D4), C201(C2×C8), C41(D5⋊C8), C2.3(D4×F5), D102(C2×C8), C20⋊C83C2, C10.8(C4×D4), C4⋊C4.12F5, (C2×D20).11C4, C10.6(C22×C8), D10⋊C813C2, C2.2(Q8.F5), D10⋊C4.8C4, C10.19(C8○D4), Dic5.69(C2×D4), D208C4.16C2, Dic5.54(C4○D4), C22.37(C22×F5), (C4×Dic5).190C22, (C2×Dic5).329C23, (C4×C5⋊C8)⋊3C2, (C5×C4⋊C4).6C4, C2.8(C2×D5⋊C8), (C2×D5⋊C8)⋊10C2, (C2×C4).60(C2×F5), (C2×C20).42(C2×C4), (C2×C5⋊C8).26C22, (C2×C4×D5).289C22, (C2×C10).40(C22×C4), (C2×Dic5).55(C2×C4), (C22×D5).47(C2×C4), SmallGroup(320,1040)

Series: Derived Chief Lower central Upper central

C1C10 — D202C8
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×D5⋊C8 — D202C8
C5C10 — D202C8

Subgroups: 474 in 134 conjugacy classes, 56 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×5], C22, C22 [×8], C5, C8 [×5], C2×C4, C2×C4 [×2], C2×C4 [×6], D4 [×4], C23 [×2], D5 [×4], C10 [×3], C42, C22⋊C4 [×2], C4⋊C4, C2×C8 [×8], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5, C20 [×2], C20 [×2], D10 [×4], D10 [×4], C2×C10, C4×C8, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8 [×2], C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×4], D20 [×4], C2×Dic5 [×2], C2×C20, C2×C20 [×2], C22×D5 [×2], C8×D4, C4×Dic5, D10⋊C4 [×2], C5×C4⋊C4, D5⋊C8 [×4], C2×C5⋊C8 [×2], C2×C5⋊C8 [×2], C2×C4×D5 [×2], C2×D20, C4×C5⋊C8, C20⋊C8, D10⋊C8 [×2], D208C4, C2×D5⋊C8 [×2], D202C8

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], D4 [×2], C23, C2×C8 [×6], C22×C4, C2×D4, C4○D4, F5, C4×D4, C22×C8, C8○D4, C2×F5 [×3], C8×D4, D5⋊C8 [×2], C22×F5, C2×D5⋊C8, D4×F5, Q8.F5, D202C8

Generators and relations
 G = < a,b,c | a20=b2=c8=1, bab=a-1, cac-1=a13, cbc-1=a12b >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 143)(2 142)(3 141)(4 160)(5 159)(6 158)(7 157)(8 156)(9 155)(10 154)(11 153)(12 152)(13 151)(14 150)(15 149)(16 148)(17 147)(18 146)(19 145)(20 144)(21 74)(22 73)(23 72)(24 71)(25 70)(26 69)(27 68)(28 67)(29 66)(30 65)(31 64)(32 63)(33 62)(34 61)(35 80)(36 79)(37 78)(38 77)(39 76)(40 75)(41 129)(42 128)(43 127)(44 126)(45 125)(46 124)(47 123)(48 122)(49 121)(50 140)(51 139)(52 138)(53 137)(54 136)(55 135)(56 134)(57 133)(58 132)(59 131)(60 130)(81 114)(82 113)(83 112)(84 111)(85 110)(86 109)(87 108)(88 107)(89 106)(90 105)(91 104)(92 103)(93 102)(94 101)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)
(1 33 103 53 149 68 98 123)(2 30 112 46 150 65 87 136)(3 27 101 59 151 62 96 129)(4 24 110 52 152 79 85 122)(5 21 119 45 153 76 94 135)(6 38 108 58 154 73 83 128)(7 35 117 51 155 70 92 121)(8 32 106 44 156 67 81 134)(9 29 115 57 157 64 90 127)(10 26 104 50 158 61 99 140)(11 23 113 43 159 78 88 133)(12 40 102 56 160 75 97 126)(13 37 111 49 141 72 86 139)(14 34 120 42 142 69 95 132)(15 31 109 55 143 66 84 125)(16 28 118 48 144 63 93 138)(17 25 107 41 145 80 82 131)(18 22 116 54 146 77 91 124)(19 39 105 47 147 74 100 137)(20 36 114 60 148 71 89 130)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,143)(2,142)(3,141)(4,160)(5,159)(6,158)(7,157)(8,156)(9,155)(10,154)(11,153)(12,152)(13,151)(14,150)(15,149)(16,148)(17,147)(18,146)(19,145)(20,144)(21,74)(22,73)(23,72)(24,71)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,129)(42,128)(43,127)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,140)(51,139)(52,138)(53,137)(54,136)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(81,114)(82,113)(83,112)(84,111)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115), (1,33,103,53,149,68,98,123)(2,30,112,46,150,65,87,136)(3,27,101,59,151,62,96,129)(4,24,110,52,152,79,85,122)(5,21,119,45,153,76,94,135)(6,38,108,58,154,73,83,128)(7,35,117,51,155,70,92,121)(8,32,106,44,156,67,81,134)(9,29,115,57,157,64,90,127)(10,26,104,50,158,61,99,140)(11,23,113,43,159,78,88,133)(12,40,102,56,160,75,97,126)(13,37,111,49,141,72,86,139)(14,34,120,42,142,69,95,132)(15,31,109,55,143,66,84,125)(16,28,118,48,144,63,93,138)(17,25,107,41,145,80,82,131)(18,22,116,54,146,77,91,124)(19,39,105,47,147,74,100,137)(20,36,114,60,148,71,89,130)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,143)(2,142)(3,141)(4,160)(5,159)(6,158)(7,157)(8,156)(9,155)(10,154)(11,153)(12,152)(13,151)(14,150)(15,149)(16,148)(17,147)(18,146)(19,145)(20,144)(21,74)(22,73)(23,72)(24,71)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,129)(42,128)(43,127)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,140)(51,139)(52,138)(53,137)(54,136)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(81,114)(82,113)(83,112)(84,111)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115), (1,33,103,53,149,68,98,123)(2,30,112,46,150,65,87,136)(3,27,101,59,151,62,96,129)(4,24,110,52,152,79,85,122)(5,21,119,45,153,76,94,135)(6,38,108,58,154,73,83,128)(7,35,117,51,155,70,92,121)(8,32,106,44,156,67,81,134)(9,29,115,57,157,64,90,127)(10,26,104,50,158,61,99,140)(11,23,113,43,159,78,88,133)(12,40,102,56,160,75,97,126)(13,37,111,49,141,72,86,139)(14,34,120,42,142,69,95,132)(15,31,109,55,143,66,84,125)(16,28,118,48,144,63,93,138)(17,25,107,41,145,80,82,131)(18,22,116,54,146,77,91,124)(19,39,105,47,147,74,100,137)(20,36,114,60,148,71,89,130) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,143),(2,142),(3,141),(4,160),(5,159),(6,158),(7,157),(8,156),(9,155),(10,154),(11,153),(12,152),(13,151),(14,150),(15,149),(16,148),(17,147),(18,146),(19,145),(20,144),(21,74),(22,73),(23,72),(24,71),(25,70),(26,69),(27,68),(28,67),(29,66),(30,65),(31,64),(32,63),(33,62),(34,61),(35,80),(36,79),(37,78),(38,77),(39,76),(40,75),(41,129),(42,128),(43,127),(44,126),(45,125),(46,124),(47,123),(48,122),(49,121),(50,140),(51,139),(52,138),(53,137),(54,136),(55,135),(56,134),(57,133),(58,132),(59,131),(60,130),(81,114),(82,113),(83,112),(84,111),(85,110),(86,109),(87,108),(88,107),(89,106),(90,105),(91,104),(92,103),(93,102),(94,101),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115)], [(1,33,103,53,149,68,98,123),(2,30,112,46,150,65,87,136),(3,27,101,59,151,62,96,129),(4,24,110,52,152,79,85,122),(5,21,119,45,153,76,94,135),(6,38,108,58,154,73,83,128),(7,35,117,51,155,70,92,121),(8,32,106,44,156,67,81,134),(9,29,115,57,157,64,90,127),(10,26,104,50,158,61,99,140),(11,23,113,43,159,78,88,133),(12,40,102,56,160,75,97,126),(13,37,111,49,141,72,86,139),(14,34,120,42,142,69,95,132),(15,31,109,55,143,66,84,125),(16,28,118,48,144,63,93,138),(17,25,107,41,145,80,82,131),(18,22,116,54,146,77,91,124),(19,39,105,47,147,74,100,137),(20,36,114,60,148,71,89,130)])

Matrix representation G ⊆ GL6(𝔽41)

2850000
7130000
0004000
0000400
0000040
001111
,
4000000
310000
001111
0000040
0000400
0004000
,
4000000
0400000
00020120
002202121
002121022
00201200

G:=sub<GL(6,GF(41))| [28,7,0,0,0,0,5,13,0,0,0,0,0,0,0,0,0,1,0,0,40,0,0,1,0,0,0,40,0,1,0,0,0,0,40,1],[40,3,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,40,0,0,1,0,40,0,0,0,1,40,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,22,21,20,0,0,20,0,21,1,0,0,1,21,0,20,0,0,20,21,22,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L 5 8A···8H8I···8T10A10B10C20A···20F
order122222224···444444458···88···810101020···20
size1111101010102···25555101045···510···104448···8

50 irreducible representations

dim111111111122244488
type+++++++++++
imageC1C2C2C2C2C2C4C4C4C8D4C4○D4C8○D4F5C2×F5D5⋊C8D4×F5Q8.F5
kernelD202C8C4×C5⋊C8C20⋊C8D10⋊C8D208C4C2×D5⋊C8D10⋊C4C5×C4⋊C4C2×D20D20C5⋊C8Dic5C10C4⋊C4C2×C4C4C2C2
# reps1112124221622413411

In GAP, Magma, Sage, TeX

D_{20}\rtimes_2C_8
% in TeX

G:=Group("D20:2C8");
// GroupNames label

G:=SmallGroup(320,1040);
// by ID

G=gap.SmallGroup(320,1040);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^12*b>;
// generators/relations

׿
×
𝔽