Copied to
clipboard

?

G = D45Dic10order 320 = 26·5

1st semidirect product of D4 and Dic10 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D45Dic10, C42.103D10, C10.132+ (1+4), (C5×D4)⋊6Q8, C20⋊Q815C2, (C4×D4).11D5, C52(D43Q8), C20.42(C2×Q8), C4⋊C4.278D10, (D4×C20).12C2, (C4×Dic10)⋊26C2, (C2×D4).242D10, C20.48D47C2, (C2×C10).83C24, C4.Dic1014C2, C20.6Q814C2, (D4×Dic5).12C2, C4.15(C2×Dic10), C10.13(C22×Q8), (C4×C20).146C22, (C2×C20).154C23, C22⋊C4.106D10, (C22×C4).202D10, C4⋊Dic5.37C22, C2.16(D46D10), C22.1(C2×Dic10), Dic5.35(C4○D4), Dic5.14D47C2, C23.D5.8C22, (D4×C10).249C22, (C22×C20).77C22, (C4×Dic5).80C22, (C2×Dic5).33C23, C2.15(C22×Dic10), C23.163(C22×D5), C22.111(C23×D5), (C22×C10).153C23, (C2×Dic10).27C22, C10.D4.108C22, (C22×Dic5).91C22, C2.18(D5×C4○D4), (C2×C10).3(C2×Q8), C10.137(C2×C4○D4), (C2×C10.D4)⋊24C2, (C5×C4⋊C4).319C22, (C2×C4).154(C22×D5), (C5×C22⋊C4).104C22, SmallGroup(320,1211)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D45Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D45Dic10
C5C2×C10 — D45Dic10

Subgroups: 694 in 228 conjugacy classes, 113 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×13], C22, C22 [×4], C22 [×4], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×16], D4 [×4], Q8 [×4], C23 [×2], C10 [×3], C10 [×4], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×15], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×Q8 [×3], Dic5 [×2], Dic5 [×7], C20 [×2], C20 [×4], C2×C10, C2×C10 [×4], C2×C10 [×4], C2×C4⋊C4 [×2], C4×D4, C4×D4 [×2], C4×Q8, C22⋊Q8 [×6], C42.C2 [×2], C4⋊Q8, Dic10 [×4], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×6], C2×C20 [×3], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×C10 [×2], D43Q8, C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×8], C4⋊Dic5 [×3], C4⋊Dic5 [×2], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×Dic10 [×2], C22×Dic5 [×4], C22×C20 [×2], D4×C10, C4×Dic10, C20.6Q8, Dic5.14D4 [×4], C20⋊Q8, C4.Dic10, C2×C10.D4 [×2], C20.48D4 [×2], D4×Dic5 [×2], D4×C20, D45Dic10

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22×Q8, C2×C4○D4, 2+ (1+4), Dic10 [×4], C22×D5 [×7], D43Q8, C2×Dic10 [×6], C23×D5, C22×Dic10, D46D10, D5×C4○D4, D45Dic10

Generators and relations
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=cac-1=a-1, ad=da, cbc-1=dbd-1=a2b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 130 117 64)(2 65 118 131)(3 132 119 66)(4 67 120 133)(5 134 101 68)(6 69 102 135)(7 136 103 70)(8 71 104 137)(9 138 105 72)(10 73 106 139)(11 140 107 74)(12 75 108 121)(13 122 109 76)(14 77 110 123)(15 124 111 78)(16 79 112 125)(17 126 113 80)(18 61 114 127)(19 128 115 62)(20 63 116 129)(21 60 156 81)(22 82 157 41)(23 42 158 83)(24 84 159 43)(25 44 160 85)(26 86 141 45)(27 46 142 87)(28 88 143 47)(29 48 144 89)(30 90 145 49)(31 50 146 91)(32 92 147 51)(33 52 148 93)(34 94 149 53)(35 54 150 95)(36 96 151 55)(37 56 152 97)(38 98 153 57)(39 58 154 99)(40 100 155 59)
(1 140)(2 75)(3 122)(4 77)(5 124)(6 79)(7 126)(8 61)(9 128)(10 63)(11 130)(12 65)(13 132)(14 67)(15 134)(16 69)(17 136)(18 71)(19 138)(20 73)(21 91)(22 51)(23 93)(24 53)(25 95)(26 55)(27 97)(28 57)(29 99)(30 59)(31 81)(32 41)(33 83)(34 43)(35 85)(36 45)(37 87)(38 47)(39 89)(40 49)(42 148)(44 150)(46 152)(48 154)(50 156)(52 158)(54 160)(56 142)(58 144)(60 146)(62 105)(64 107)(66 109)(68 111)(70 113)(72 115)(74 117)(76 119)(78 101)(80 103)(82 147)(84 149)(86 151)(88 153)(90 155)(92 157)(94 159)(96 141)(98 143)(100 145)(102 125)(104 127)(106 129)(108 131)(110 133)(112 135)(114 137)(116 139)(118 121)(120 123)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 39 11 29)(2 38 12 28)(3 37 13 27)(4 36 14 26)(5 35 15 25)(6 34 16 24)(7 33 17 23)(8 32 18 22)(9 31 19 21)(10 30 20 40)(41 137 51 127)(42 136 52 126)(43 135 53 125)(44 134 54 124)(45 133 55 123)(46 132 56 122)(47 131 57 121)(48 130 58 140)(49 129 59 139)(50 128 60 138)(61 82 71 92)(62 81 72 91)(63 100 73 90)(64 99 74 89)(65 98 75 88)(66 97 76 87)(67 96 77 86)(68 95 78 85)(69 94 79 84)(70 93 80 83)(101 150 111 160)(102 149 112 159)(103 148 113 158)(104 147 114 157)(105 146 115 156)(106 145 116 155)(107 144 117 154)(108 143 118 153)(109 142 119 152)(110 141 120 151)

G:=sub<Sym(160)| (1,130,117,64)(2,65,118,131)(3,132,119,66)(4,67,120,133)(5,134,101,68)(6,69,102,135)(7,136,103,70)(8,71,104,137)(9,138,105,72)(10,73,106,139)(11,140,107,74)(12,75,108,121)(13,122,109,76)(14,77,110,123)(15,124,111,78)(16,79,112,125)(17,126,113,80)(18,61,114,127)(19,128,115,62)(20,63,116,129)(21,60,156,81)(22,82,157,41)(23,42,158,83)(24,84,159,43)(25,44,160,85)(26,86,141,45)(27,46,142,87)(28,88,143,47)(29,48,144,89)(30,90,145,49)(31,50,146,91)(32,92,147,51)(33,52,148,93)(34,94,149,53)(35,54,150,95)(36,96,151,55)(37,56,152,97)(38,98,153,57)(39,58,154,99)(40,100,155,59), (1,140)(2,75)(3,122)(4,77)(5,124)(6,79)(7,126)(8,61)(9,128)(10,63)(11,130)(12,65)(13,132)(14,67)(15,134)(16,69)(17,136)(18,71)(19,138)(20,73)(21,91)(22,51)(23,93)(24,53)(25,95)(26,55)(27,97)(28,57)(29,99)(30,59)(31,81)(32,41)(33,83)(34,43)(35,85)(36,45)(37,87)(38,47)(39,89)(40,49)(42,148)(44,150)(46,152)(48,154)(50,156)(52,158)(54,160)(56,142)(58,144)(60,146)(62,105)(64,107)(66,109)(68,111)(70,113)(72,115)(74,117)(76,119)(78,101)(80,103)(82,147)(84,149)(86,151)(88,153)(90,155)(92,157)(94,159)(96,141)(98,143)(100,145)(102,125)(104,127)(106,129)(108,131)(110,133)(112,135)(114,137)(116,139)(118,121)(120,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,39,11,29)(2,38,12,28)(3,37,13,27)(4,36,14,26)(5,35,15,25)(6,34,16,24)(7,33,17,23)(8,32,18,22)(9,31,19,21)(10,30,20,40)(41,137,51,127)(42,136,52,126)(43,135,53,125)(44,134,54,124)(45,133,55,123)(46,132,56,122)(47,131,57,121)(48,130,58,140)(49,129,59,139)(50,128,60,138)(61,82,71,92)(62,81,72,91)(63,100,73,90)(64,99,74,89)(65,98,75,88)(66,97,76,87)(67,96,77,86)(68,95,78,85)(69,94,79,84)(70,93,80,83)(101,150,111,160)(102,149,112,159)(103,148,113,158)(104,147,114,157)(105,146,115,156)(106,145,116,155)(107,144,117,154)(108,143,118,153)(109,142,119,152)(110,141,120,151)>;

G:=Group( (1,130,117,64)(2,65,118,131)(3,132,119,66)(4,67,120,133)(5,134,101,68)(6,69,102,135)(7,136,103,70)(8,71,104,137)(9,138,105,72)(10,73,106,139)(11,140,107,74)(12,75,108,121)(13,122,109,76)(14,77,110,123)(15,124,111,78)(16,79,112,125)(17,126,113,80)(18,61,114,127)(19,128,115,62)(20,63,116,129)(21,60,156,81)(22,82,157,41)(23,42,158,83)(24,84,159,43)(25,44,160,85)(26,86,141,45)(27,46,142,87)(28,88,143,47)(29,48,144,89)(30,90,145,49)(31,50,146,91)(32,92,147,51)(33,52,148,93)(34,94,149,53)(35,54,150,95)(36,96,151,55)(37,56,152,97)(38,98,153,57)(39,58,154,99)(40,100,155,59), (1,140)(2,75)(3,122)(4,77)(5,124)(6,79)(7,126)(8,61)(9,128)(10,63)(11,130)(12,65)(13,132)(14,67)(15,134)(16,69)(17,136)(18,71)(19,138)(20,73)(21,91)(22,51)(23,93)(24,53)(25,95)(26,55)(27,97)(28,57)(29,99)(30,59)(31,81)(32,41)(33,83)(34,43)(35,85)(36,45)(37,87)(38,47)(39,89)(40,49)(42,148)(44,150)(46,152)(48,154)(50,156)(52,158)(54,160)(56,142)(58,144)(60,146)(62,105)(64,107)(66,109)(68,111)(70,113)(72,115)(74,117)(76,119)(78,101)(80,103)(82,147)(84,149)(86,151)(88,153)(90,155)(92,157)(94,159)(96,141)(98,143)(100,145)(102,125)(104,127)(106,129)(108,131)(110,133)(112,135)(114,137)(116,139)(118,121)(120,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,39,11,29)(2,38,12,28)(3,37,13,27)(4,36,14,26)(5,35,15,25)(6,34,16,24)(7,33,17,23)(8,32,18,22)(9,31,19,21)(10,30,20,40)(41,137,51,127)(42,136,52,126)(43,135,53,125)(44,134,54,124)(45,133,55,123)(46,132,56,122)(47,131,57,121)(48,130,58,140)(49,129,59,139)(50,128,60,138)(61,82,71,92)(62,81,72,91)(63,100,73,90)(64,99,74,89)(65,98,75,88)(66,97,76,87)(67,96,77,86)(68,95,78,85)(69,94,79,84)(70,93,80,83)(101,150,111,160)(102,149,112,159)(103,148,113,158)(104,147,114,157)(105,146,115,156)(106,145,116,155)(107,144,117,154)(108,143,118,153)(109,142,119,152)(110,141,120,151) );

G=PermutationGroup([(1,130,117,64),(2,65,118,131),(3,132,119,66),(4,67,120,133),(5,134,101,68),(6,69,102,135),(7,136,103,70),(8,71,104,137),(9,138,105,72),(10,73,106,139),(11,140,107,74),(12,75,108,121),(13,122,109,76),(14,77,110,123),(15,124,111,78),(16,79,112,125),(17,126,113,80),(18,61,114,127),(19,128,115,62),(20,63,116,129),(21,60,156,81),(22,82,157,41),(23,42,158,83),(24,84,159,43),(25,44,160,85),(26,86,141,45),(27,46,142,87),(28,88,143,47),(29,48,144,89),(30,90,145,49),(31,50,146,91),(32,92,147,51),(33,52,148,93),(34,94,149,53),(35,54,150,95),(36,96,151,55),(37,56,152,97),(38,98,153,57),(39,58,154,99),(40,100,155,59)], [(1,140),(2,75),(3,122),(4,77),(5,124),(6,79),(7,126),(8,61),(9,128),(10,63),(11,130),(12,65),(13,132),(14,67),(15,134),(16,69),(17,136),(18,71),(19,138),(20,73),(21,91),(22,51),(23,93),(24,53),(25,95),(26,55),(27,97),(28,57),(29,99),(30,59),(31,81),(32,41),(33,83),(34,43),(35,85),(36,45),(37,87),(38,47),(39,89),(40,49),(42,148),(44,150),(46,152),(48,154),(50,156),(52,158),(54,160),(56,142),(58,144),(60,146),(62,105),(64,107),(66,109),(68,111),(70,113),(72,115),(74,117),(76,119),(78,101),(80,103),(82,147),(84,149),(86,151),(88,153),(90,155),(92,157),(94,159),(96,141),(98,143),(100,145),(102,125),(104,127),(106,129),(108,131),(110,133),(112,135),(114,137),(116,139),(118,121),(120,123)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,39,11,29),(2,38,12,28),(3,37,13,27),(4,36,14,26),(5,35,15,25),(6,34,16,24),(7,33,17,23),(8,32,18,22),(9,31,19,21),(10,30,20,40),(41,137,51,127),(42,136,52,126),(43,135,53,125),(44,134,54,124),(45,133,55,123),(46,132,56,122),(47,131,57,121),(48,130,58,140),(49,129,59,139),(50,128,60,138),(61,82,71,92),(62,81,72,91),(63,100,73,90),(64,99,74,89),(65,98,75,88),(66,97,76,87),(67,96,77,86),(68,95,78,85),(69,94,79,84),(70,93,80,83),(101,150,111,160),(102,149,112,159),(103,148,113,158),(104,147,114,157),(105,146,115,156),(106,145,116,155),(107,144,117,154),(108,143,118,153),(109,142,119,152),(110,141,120,151)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
001000
000100
0000121
00003740
,
100000
010000
001000
000100
0000121
0000040
,
34310000
570000
0014000
0083400
0000320
0000369
,
40110000
1110000
003500
00233800
0000121
00003740

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,37,0,0,0,0,21,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,21,40],[34,5,0,0,0,0,31,7,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,32,36,0,0,0,0,0,9],[40,11,0,0,0,0,11,1,0,0,0,0,0,0,3,23,0,0,0,0,5,38,0,0,0,0,0,0,1,37,0,0,0,0,21,40] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim1111111111222222222444
type++++++++++-++++++-+
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D10D10Dic102+ (1+4)D46D10D5×C4○D4
kernelD45Dic10C4×Dic10C20.6Q8Dic5.14D4C20⋊Q8C4.Dic10C2×C10.D4C20.48D4D4×Dic5D4×C20C5×D4C4×D4Dic5C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C2C2
# reps11141122214242424216144

In GAP, Magma, Sage, TeX

D_4\rtimes_5Dic_{10}
% in TeX

G:=Group("D4:5Dic10");
// GroupNames label

G:=SmallGroup(320,1211);
// by ID

G=gap.SmallGroup(320,1211);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,675,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽