Copied to
clipboard

?

G = D46D20order 320 = 26·5

2nd semidirect product of D4 and D20 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46D20, C42.112D10, C10.612- (1+4), (C4×D4)⋊17D5, (C5×D4)⋊11D4, (D4×C20)⋊19C2, (C4×D20)⋊31C2, C53(D46D4), C4.23(C2×D20), C20.55(C2×D4), C2014(C4○D4), C207D410C2, C45(D42D5), C4⋊C4.284D10, C202Q825C2, C22.2(C2×D20), D102Q815C2, (C2×D4).249D10, (C2×C10).99C24, C2.19(C22×D20), C10.17(C22×D4), (C4×C20).155C22, (C2×C20).160C23, C22⋊C4.113D10, (C22×C4).211D10, C22.D206C2, C4⋊Dic5.39C22, (D4×C10).260C22, (C2×D20).220C22, D10⋊C4.5C22, (C22×C20).81C22, (C22×D5).34C23, C22.124(C23×D5), C23.173(C22×D5), (C22×C10).169C23, (C2×Dic5).216C23, C2.18(D4.10D10), (C2×Dic10).150C22, (C22×Dic5).97C22, (C2×C10).2(C2×D4), (C2×D42D5)⋊4C2, (C2×C4⋊Dic5)⋊25C2, C10.74(C2×C4○D4), (C2×C4×D5).74C22, C2.22(C2×D42D5), (C5×C4⋊C4).329C22, (C2×C4).732(C22×D5), (C2×C5⋊D4).15C22, (C5×C22⋊C4).106C22, SmallGroup(320,1227)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D46D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×D42D5 — D46D20
C5C2×C10 — D46D20

Subgroups: 1030 in 292 conjugacy classes, 115 normal (29 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×4], C22 [×10], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×22], D4 [×4], D4 [×10], Q8 [×4], C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×4], C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×9], C22×C4 [×2], C22×C4 [×6], C2×D4, C2×D4 [×5], C2×Q8 [×2], C4○D4 [×8], Dic5 [×6], C20 [×4], C20 [×3], D10 [×6], C2×C10, C2×C10 [×4], C2×C10 [×4], C2×C4⋊C4 [×2], C4×D4, C4×D4, C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], D20 [×2], C2×Dic5 [×6], C2×Dic5 [×8], C5⋊D4 [×8], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×4], C22×D5 [×2], C22×C10 [×2], D46D4, C4⋊Dic5, C4⋊Dic5 [×8], D10⋊C4 [×6], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, D42D5 [×8], C22×Dic5 [×4], C2×C5⋊D4 [×4], C22×C20 [×2], D4×C10, C202Q8, C4×D20, C22.D20 [×4], D102Q8 [×2], C2×C4⋊Dic5 [×2], C207D4 [×2], D4×C20, C2×D42D5 [×2], D46D20

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), D20 [×4], C22×D5 [×7], D46D4, C2×D20 [×6], D42D5 [×2], C23×D5, C22×D20, C2×D42D5, D4.10D10, D46D20

Generators and relations
 G = < a,b,c,d | a4=b2=c20=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 139 33 88)(2 140 34 89)(3 121 35 90)(4 122 36 91)(5 123 37 92)(6 124 38 93)(7 125 39 94)(8 126 40 95)(9 127 21 96)(10 128 22 97)(11 129 23 98)(12 130 24 99)(13 131 25 100)(14 132 26 81)(15 133 27 82)(16 134 28 83)(17 135 29 84)(18 136 30 85)(19 137 31 86)(20 138 32 87)(41 154 75 114)(42 155 76 115)(43 156 77 116)(44 157 78 117)(45 158 79 118)(46 159 80 119)(47 160 61 120)(48 141 62 101)(49 142 63 102)(50 143 64 103)(51 144 65 104)(52 145 66 105)(53 146 67 106)(54 147 68 107)(55 148 69 108)(56 149 70 109)(57 150 71 110)(58 151 72 111)(59 152 73 112)(60 153 74 113)
(1 157)(2 158)(3 159)(4 160)(5 141)(6 142)(7 143)(8 144)(9 145)(10 146)(11 147)(12 148)(13 149)(14 150)(15 151)(16 152)(17 153)(18 154)(19 155)(20 156)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 101)(38 102)(39 103)(40 104)(41 136)(42 137)(43 138)(44 139)(45 140)(46 121)(47 122)(48 123)(49 124)(50 125)(51 126)(52 127)(53 128)(54 129)(55 130)(56 131)(57 132)(58 133)(59 134)(60 135)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 24)(22 23)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)(95 100)(96 99)(97 98)(101 152)(102 151)(103 150)(104 149)(105 148)(106 147)(107 146)(108 145)(109 144)(110 143)(111 142)(112 141)(113 160)(114 159)(115 158)(116 157)(117 156)(118 155)(119 154)(120 153)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 130)(128 129)(137 140)(138 139)

G:=sub<Sym(160)| (1,139,33,88)(2,140,34,89)(3,121,35,90)(4,122,36,91)(5,123,37,92)(6,124,38,93)(7,125,39,94)(8,126,40,95)(9,127,21,96)(10,128,22,97)(11,129,23,98)(12,130,24,99)(13,131,25,100)(14,132,26,81)(15,133,27,82)(16,134,28,83)(17,135,29,84)(18,136,30,85)(19,137,31,86)(20,138,32,87)(41,154,75,114)(42,155,76,115)(43,156,77,116)(44,157,78,117)(45,158,79,118)(46,159,80,119)(47,160,61,120)(48,141,62,101)(49,142,63,102)(50,143,64,103)(51,144,65,104)(52,145,66,105)(53,146,67,106)(54,147,68,107)(55,148,69,108)(56,149,70,109)(57,150,71,110)(58,151,72,111)(59,152,73,112)(60,153,74,113), (1,157)(2,158)(3,159)(4,160)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,101)(38,102)(39,103)(40,104)(41,136)(42,137)(43,138)(44,139)(45,140)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,152)(102,151)(103,150)(104,149)(105,148)(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141)(113,160)(114,159)(115,158)(116,157)(117,156)(118,155)(119,154)(120,153)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139)>;

G:=Group( (1,139,33,88)(2,140,34,89)(3,121,35,90)(4,122,36,91)(5,123,37,92)(6,124,38,93)(7,125,39,94)(8,126,40,95)(9,127,21,96)(10,128,22,97)(11,129,23,98)(12,130,24,99)(13,131,25,100)(14,132,26,81)(15,133,27,82)(16,134,28,83)(17,135,29,84)(18,136,30,85)(19,137,31,86)(20,138,32,87)(41,154,75,114)(42,155,76,115)(43,156,77,116)(44,157,78,117)(45,158,79,118)(46,159,80,119)(47,160,61,120)(48,141,62,101)(49,142,63,102)(50,143,64,103)(51,144,65,104)(52,145,66,105)(53,146,67,106)(54,147,68,107)(55,148,69,108)(56,149,70,109)(57,150,71,110)(58,151,72,111)(59,152,73,112)(60,153,74,113), (1,157)(2,158)(3,159)(4,160)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,101)(38,102)(39,103)(40,104)(41,136)(42,137)(43,138)(44,139)(45,140)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,152)(102,151)(103,150)(104,149)(105,148)(106,147)(107,146)(108,145)(109,144)(110,143)(111,142)(112,141)(113,160)(114,159)(115,158)(116,157)(117,156)(118,155)(119,154)(120,153)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139) );

G=PermutationGroup([(1,139,33,88),(2,140,34,89),(3,121,35,90),(4,122,36,91),(5,123,37,92),(6,124,38,93),(7,125,39,94),(8,126,40,95),(9,127,21,96),(10,128,22,97),(11,129,23,98),(12,130,24,99),(13,131,25,100),(14,132,26,81),(15,133,27,82),(16,134,28,83),(17,135,29,84),(18,136,30,85),(19,137,31,86),(20,138,32,87),(41,154,75,114),(42,155,76,115),(43,156,77,116),(44,157,78,117),(45,158,79,118),(46,159,80,119),(47,160,61,120),(48,141,62,101),(49,142,63,102),(50,143,64,103),(51,144,65,104),(52,145,66,105),(53,146,67,106),(54,147,68,107),(55,148,69,108),(56,149,70,109),(57,150,71,110),(58,151,72,111),(59,152,73,112),(60,153,74,113)], [(1,157),(2,158),(3,159),(4,160),(5,141),(6,142),(7,143),(8,144),(9,145),(10,146),(11,147),(12,148),(13,149),(14,150),(15,151),(16,152),(17,153),(18,154),(19,155),(20,156),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,101),(38,102),(39,103),(40,104),(41,136),(42,137),(43,138),(44,139),(45,140),(46,121),(47,122),(48,123),(49,124),(50,125),(51,126),(52,127),(53,128),(54,129),(55,130),(56,131),(57,132),(58,133),(59,134),(60,135),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,24),(22,23),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88),(95,100),(96,99),(97,98),(101,152),(102,151),(103,150),(104,149),(105,148),(106,147),(107,146),(108,145),(109,144),(110,143),(111,142),(112,141),(113,160),(114,159),(115,158),(116,157),(117,156),(118,155),(119,154),(120,153),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,130),(128,129),(137,140),(138,139)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
0100
00320
0009
,
1000
0100
0009
00320
,
27200
251100
00400
00040
,
30200
221100
00400
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,0,32,0,0,9,0],[27,25,0,0,2,11,0,0,0,0,40,0,0,0,0,40],[30,22,0,0,2,11,0,0,0,0,40,0,0,0,0,1] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224444444444444445510···1010···1020···2020···20
size11112222202022224441010101020202020222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++++++++++---
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10D202- (1+4)D42D5D4.10D10
kernelD46D20C202Q8C4×D20C22.D20D102Q8C2×C4⋊Dic5C207D4D4×C20C2×D42D5C5×D4C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222124242424216144

In GAP, Magma, Sage, TeX

D_4\rtimes_6D_{20}
% in TeX

G:=Group("D4:6D20");
// GroupNames label

G:=SmallGroup(320,1227);
// by ID

G=gap.SmallGroup(320,1227);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽