Copied to
clipboard

?

G = Q86D20order 320 = 26·5

2nd semidirect product of Q8 and D20 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q86D20, C42.129D10, C10.1102+ (1+4), (C5×Q8)⋊11D4, (C4×Q8)⋊10D5, (C4×D20)⋊39C2, (Q8×C20)⋊12C2, C52(Q86D4), C4.26(C2×D20), C20.58(C2×D4), C2017(C4○D4), C42D2018C2, C4⋊D2013C2, C4⋊C4.296D10, C43(Q82D5), (C2×Q8).205D10, C2.22(C22×D20), C10.20(C22×D4), (C2×C20).170C23, (C2×C10).121C24, (C4×C20).173C22, (C2×D20).30C22, C2.22(D48D10), C4⋊Dic5.399C22, (Q8×C10).221C22, (C22×D5).46C23, C22.142(C23×D5), (C2×Dic5).225C23, D10⋊C4.101C22, (C2×Q82D5)⋊4C2, (C2×C4×D5).82C22, C10.112(C2×C4○D4), C2.11(C2×Q82D5), (C5×C4⋊C4).349C22, (C2×C4).734(C22×D5), SmallGroup(320,1249)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Q86D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q82D5 — Q86D20
C5C2×C10 — Q86D20

Subgroups: 1366 in 312 conjugacy classes, 115 normal (18 characteristic)
C1, C2 [×3], C2 [×6], C4 [×8], C4 [×5], C22, C22 [×18], C5, C2×C4, C2×C4 [×6], C2×C4 [×14], D4 [×24], Q8 [×4], C23 [×6], D5 [×6], C10 [×3], C42 [×3], C22⋊C4 [×6], C4⋊C4 [×3], C4⋊C4, C22×C4 [×6], C2×D4 [×15], C2×Q8, C4○D4 [×8], Dic5 [×2], C20 [×8], C20 [×3], D10 [×18], C2×C10, C4×D4 [×3], C4×Q8, C4⋊D4 [×6], C41D4 [×3], C2×C4○D4 [×2], C4×D5 [×12], D20 [×24], C2×Dic5 [×2], C2×C20, C2×C20 [×6], C5×Q8 [×4], C22×D5 [×6], Q86D4, C4⋊Dic5, D10⋊C4 [×6], C4×C20 [×3], C5×C4⋊C4 [×3], C2×C4×D5 [×6], C2×D20 [×15], Q82D5 [×8], Q8×C10, C4×D20 [×3], C4⋊D20 [×3], C42D20 [×6], Q8×C20, C2×Q82D5 [×2], Q86D20

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2+ (1+4), D20 [×4], C22×D5 [×7], Q86D4, C2×D20 [×6], Q82D5 [×2], C23×D5, C22×D20, C2×Q82D5, D48D10, Q86D20

Generators and relations
 G = < a,b,c,d | a4=c20=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 123 96 47)(2 124 97 48)(3 125 98 49)(4 126 99 50)(5 127 100 51)(6 128 81 52)(7 129 82 53)(8 130 83 54)(9 131 84 55)(10 132 85 56)(11 133 86 57)(12 134 87 58)(13 135 88 59)(14 136 89 60)(15 137 90 41)(16 138 91 42)(17 139 92 43)(18 140 93 44)(19 121 94 45)(20 122 95 46)(21 75 153 115)(22 76 154 116)(23 77 155 117)(24 78 156 118)(25 79 157 119)(26 80 158 120)(27 61 159 101)(28 62 160 102)(29 63 141 103)(30 64 142 104)(31 65 143 105)(32 66 144 106)(33 67 145 107)(34 68 146 108)(35 69 147 109)(36 70 148 110)(37 71 149 111)(38 72 150 112)(39 73 151 113)(40 74 152 114)
(1 76 96 116)(2 77 97 117)(3 78 98 118)(4 79 99 119)(5 80 100 120)(6 61 81 101)(7 62 82 102)(8 63 83 103)(9 64 84 104)(10 65 85 105)(11 66 86 106)(12 67 87 107)(13 68 88 108)(14 69 89 109)(15 70 90 110)(16 71 91 111)(17 72 92 112)(18 73 93 113)(19 74 94 114)(20 75 95 115)(21 46 153 122)(22 47 154 123)(23 48 155 124)(24 49 156 125)(25 50 157 126)(26 51 158 127)(27 52 159 128)(28 53 160 129)(29 54 141 130)(30 55 142 131)(31 56 143 132)(32 57 144 133)(33 58 145 134)(34 59 146 135)(35 60 147 136)(36 41 148 137)(37 42 149 138)(38 43 150 139)(39 44 151 140)(40 45 152 121)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 50)(8 49)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(17 60)(18 59)(19 58)(20 57)(21 106)(22 105)(23 104)(24 103)(25 102)(26 101)(27 120)(28 119)(29 118)(30 117)(31 116)(32 115)(33 114)(34 113)(35 112)(36 111)(37 110)(38 109)(39 108)(40 107)(61 158)(62 157)(63 156)(64 155)(65 154)(66 153)(67 152)(68 151)(69 150)(70 149)(71 148)(72 147)(73 146)(74 145)(75 144)(76 143)(77 142)(78 141)(79 160)(80 159)(81 127)(82 126)(83 125)(84 124)(85 123)(86 122)(87 121)(88 140)(89 139)(90 138)(91 137)(92 136)(93 135)(94 134)(95 133)(96 132)(97 131)(98 130)(99 129)(100 128)

G:=sub<Sym(160)| (1,123,96,47)(2,124,97,48)(3,125,98,49)(4,126,99,50)(5,127,100,51)(6,128,81,52)(7,129,82,53)(8,130,83,54)(9,131,84,55)(10,132,85,56)(11,133,86,57)(12,134,87,58)(13,135,88,59)(14,136,89,60)(15,137,90,41)(16,138,91,42)(17,139,92,43)(18,140,93,44)(19,121,94,45)(20,122,95,46)(21,75,153,115)(22,76,154,116)(23,77,155,117)(24,78,156,118)(25,79,157,119)(26,80,158,120)(27,61,159,101)(28,62,160,102)(29,63,141,103)(30,64,142,104)(31,65,143,105)(32,66,144,106)(33,67,145,107)(34,68,146,108)(35,69,147,109)(36,70,148,110)(37,71,149,111)(38,72,150,112)(39,73,151,113)(40,74,152,114), (1,76,96,116)(2,77,97,117)(3,78,98,118)(4,79,99,119)(5,80,100,120)(6,61,81,101)(7,62,82,102)(8,63,83,103)(9,64,84,104)(10,65,85,105)(11,66,86,106)(12,67,87,107)(13,68,88,108)(14,69,89,109)(15,70,90,110)(16,71,91,111)(17,72,92,112)(18,73,93,113)(19,74,94,114)(20,75,95,115)(21,46,153,122)(22,47,154,123)(23,48,155,124)(24,49,156,125)(25,50,157,126)(26,51,158,127)(27,52,159,128)(28,53,160,129)(29,54,141,130)(30,55,142,131)(31,56,143,132)(32,57,144,133)(33,58,145,134)(34,59,146,135)(35,60,147,136)(36,41,148,137)(37,42,149,138)(38,43,150,139)(39,44,151,140)(40,45,152,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,60)(18,59)(19,58)(20,57)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,110)(38,109)(39,108)(40,107)(61,158)(62,157)(63,156)(64,155)(65,154)(66,153)(67,152)(68,151)(69,150)(70,149)(71,148)(72,147)(73,146)(74,145)(75,144)(76,143)(77,142)(78,141)(79,160)(80,159)(81,127)(82,126)(83,125)(84,124)(85,123)(86,122)(87,121)(88,140)(89,139)(90,138)(91,137)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128)>;

G:=Group( (1,123,96,47)(2,124,97,48)(3,125,98,49)(4,126,99,50)(5,127,100,51)(6,128,81,52)(7,129,82,53)(8,130,83,54)(9,131,84,55)(10,132,85,56)(11,133,86,57)(12,134,87,58)(13,135,88,59)(14,136,89,60)(15,137,90,41)(16,138,91,42)(17,139,92,43)(18,140,93,44)(19,121,94,45)(20,122,95,46)(21,75,153,115)(22,76,154,116)(23,77,155,117)(24,78,156,118)(25,79,157,119)(26,80,158,120)(27,61,159,101)(28,62,160,102)(29,63,141,103)(30,64,142,104)(31,65,143,105)(32,66,144,106)(33,67,145,107)(34,68,146,108)(35,69,147,109)(36,70,148,110)(37,71,149,111)(38,72,150,112)(39,73,151,113)(40,74,152,114), (1,76,96,116)(2,77,97,117)(3,78,98,118)(4,79,99,119)(5,80,100,120)(6,61,81,101)(7,62,82,102)(8,63,83,103)(9,64,84,104)(10,65,85,105)(11,66,86,106)(12,67,87,107)(13,68,88,108)(14,69,89,109)(15,70,90,110)(16,71,91,111)(17,72,92,112)(18,73,93,113)(19,74,94,114)(20,75,95,115)(21,46,153,122)(22,47,154,123)(23,48,155,124)(24,49,156,125)(25,50,157,126)(26,51,158,127)(27,52,159,128)(28,53,160,129)(29,54,141,130)(30,55,142,131)(31,56,143,132)(32,57,144,133)(33,58,145,134)(34,59,146,135)(35,60,147,136)(36,41,148,137)(37,42,149,138)(38,43,150,139)(39,44,151,140)(40,45,152,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,60)(18,59)(19,58)(20,57)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,110)(38,109)(39,108)(40,107)(61,158)(62,157)(63,156)(64,155)(65,154)(66,153)(67,152)(68,151)(69,150)(70,149)(71,148)(72,147)(73,146)(74,145)(75,144)(76,143)(77,142)(78,141)(79,160)(80,159)(81,127)(82,126)(83,125)(84,124)(85,123)(86,122)(87,121)(88,140)(89,139)(90,138)(91,137)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128) );

G=PermutationGroup([(1,123,96,47),(2,124,97,48),(3,125,98,49),(4,126,99,50),(5,127,100,51),(6,128,81,52),(7,129,82,53),(8,130,83,54),(9,131,84,55),(10,132,85,56),(11,133,86,57),(12,134,87,58),(13,135,88,59),(14,136,89,60),(15,137,90,41),(16,138,91,42),(17,139,92,43),(18,140,93,44),(19,121,94,45),(20,122,95,46),(21,75,153,115),(22,76,154,116),(23,77,155,117),(24,78,156,118),(25,79,157,119),(26,80,158,120),(27,61,159,101),(28,62,160,102),(29,63,141,103),(30,64,142,104),(31,65,143,105),(32,66,144,106),(33,67,145,107),(34,68,146,108),(35,69,147,109),(36,70,148,110),(37,71,149,111),(38,72,150,112),(39,73,151,113),(40,74,152,114)], [(1,76,96,116),(2,77,97,117),(3,78,98,118),(4,79,99,119),(5,80,100,120),(6,61,81,101),(7,62,82,102),(8,63,83,103),(9,64,84,104),(10,65,85,105),(11,66,86,106),(12,67,87,107),(13,68,88,108),(14,69,89,109),(15,70,90,110),(16,71,91,111),(17,72,92,112),(18,73,93,113),(19,74,94,114),(20,75,95,115),(21,46,153,122),(22,47,154,123),(23,48,155,124),(24,49,156,125),(25,50,157,126),(26,51,158,127),(27,52,159,128),(28,53,160,129),(29,54,141,130),(30,55,142,131),(31,56,143,132),(32,57,144,133),(33,58,145,134),(34,59,146,135),(35,60,147,136),(36,41,148,137),(37,42,149,138),(38,43,150,139),(39,44,151,140),(40,45,152,121)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,50),(8,49),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(17,60),(18,59),(19,58),(20,57),(21,106),(22,105),(23,104),(24,103),(25,102),(26,101),(27,120),(28,119),(29,118),(30,117),(31,116),(32,115),(33,114),(34,113),(35,112),(36,111),(37,110),(38,109),(39,108),(40,107),(61,158),(62,157),(63,156),(64,155),(65,154),(66,153),(67,152),(68,151),(69,150),(70,149),(71,148),(72,147),(73,146),(74,145),(75,144),(76,143),(77,142),(78,141),(79,160),(80,159),(81,127),(82,126),(83,125),(84,124),(85,123),(86,122),(87,121),(88,140),(89,139),(90,138),(91,137),(92,136),(93,135),(94,134),(95,133),(96,132),(97,131),(98,130),(99,129),(100,128)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
0100
004021
00371
,
1000
0100
003225
0009
,
273000
113200
0010
0001
,
302700
321100
004021
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,37,0,0,21,1],[1,0,0,0,0,1,0,0,0,0,32,0,0,0,25,9],[27,11,0,0,30,32,0,0,0,0,1,0,0,0,0,1],[30,32,0,0,27,11,0,0,0,0,40,0,0,0,21,1] >;

65 conjugacy classes

class 1 2A2B2C2D···2I4A···4H4I4J4K4L4M4N4O5A5B10A···10F20A···20H20I···20AF
order12222···24···444444445510···1020···2020···20
size111120···202···244410101010222···22···24···4

65 irreducible representations

dim1111112222222444
type+++++++++++++++
imageC1C2C2C2C2C2D4D5C4○D4D10D10D10D202+ (1+4)Q82D5D48D10
kernelQ86D20C4×D20C4⋊D20C42D20Q8×C20C2×Q82D5C5×Q8C4×Q8C20C42C4⋊C4C2×Q8Q8C10C4C2
# reps13361242466216144

In GAP, Magma, Sage, TeX

Q_8\rtimes_6D_{20}
% in TeX

G:=Group("Q8:6D20");
// GroupNames label

G:=SmallGroup(320,1249);
// by ID

G=gap.SmallGroup(320,1249);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,184,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽