Copied to
clipboard

?

G = Q85D20order 320 = 26·5

1st semidirect product of Q8 and D20 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q85D20, C42.128D10, C10.112- (1+4), (C4×Q8)⋊9D5, (C5×Q8)⋊10D4, (C4×D20)⋊38C2, (Q8×C20)⋊11C2, C52(Q85D4), C4.25(C2×D20), C20.57(C2×D4), C42D2017C2, C4⋊C4.295D10, D1013(C4○D4), D102Q818C2, C4.D2020C2, (C2×Q8).204D10, C2.21(C22×D20), C10.19(C22×D4), (C2×C10).120C24, (C2×C20).498C23, (C4×C20).172C22, D10⋊C4.6C22, (C2×D20).224C22, C4⋊Dic5.306C22, (Q8×C10).220C22, (C2×Dic5).54C23, (C22×D5).45C23, C22.141(C23×D5), C2.12(Q8.10D10), (C2×Dic10).155C22, (C2×Q8×D5)⋊4C2, C2.29(D5×C4○D4), (C2×Q82D5)⋊3C2, (C2×C4×D5).81C22, C10.145(C2×C4○D4), (C5×C4⋊C4).348C22, (C2×C4).168(C22×D5), SmallGroup(320,1248)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Q85D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — Q85D20
C5C2×C10 — Q85D20

Subgroups: 1126 in 290 conjugacy classes, 113 normal (22 characteristic)
C1, C2 [×3], C2 [×5], C4 [×6], C4 [×8], C22, C22 [×13], C5, C2×C4, C2×C4 [×6], C2×C4 [×16], D4 [×12], Q8 [×4], Q8 [×6], C23 [×4], D5 [×5], C10 [×3], C42 [×3], C22⋊C4 [×10], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×6], C2×D4 [×6], C2×Q8, C2×Q8 [×7], C4○D4 [×4], Dic5 [×4], C20 [×6], C20 [×4], D10 [×2], D10 [×11], C2×C10, C4×D4 [×3], C4×Q8, C4⋊D4 [×3], C22⋊Q8 [×3], C4.4D4 [×3], C22×Q8, C2×C4○D4, Dic10 [×6], C4×D5 [×12], D20 [×12], C2×Dic5, C2×Dic5 [×3], C2×C20, C2×C20 [×6], C5×Q8 [×4], C22×D5, C22×D5 [×3], Q85D4, C4⋊Dic5 [×3], D10⋊C4, D10⋊C4 [×9], C4×C20 [×3], C5×C4⋊C4 [×3], C2×Dic10 [×3], C2×C4×D5 [×6], C2×D20 [×6], Q8×D5 [×4], Q82D5 [×4], Q8×C10, C4×D20 [×3], C4.D20 [×3], C42D20 [×3], D102Q8 [×3], Q8×C20, C2×Q8×D5, C2×Q82D5, Q85D20

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), D20 [×4], C22×D5 [×7], Q85D4, C2×D20 [×6], C23×D5, C22×D20, Q8.10D10, D5×C4○D4, Q85D20

Generators and relations
 G = < a,b,c,d | a4=c20=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 105 88 126)(2 106 89 127)(3 107 90 128)(4 108 91 129)(5 109 92 130)(6 110 93 131)(7 111 94 132)(8 112 95 133)(9 113 96 134)(10 114 97 135)(11 115 98 136)(12 116 99 137)(13 117 100 138)(14 118 81 139)(15 119 82 140)(16 120 83 121)(17 101 84 122)(18 102 85 123)(19 103 86 124)(20 104 87 125)(21 49 144 71)(22 50 145 72)(23 51 146 73)(24 52 147 74)(25 53 148 75)(26 54 149 76)(27 55 150 77)(28 56 151 78)(29 57 152 79)(30 58 153 80)(31 59 154 61)(32 60 155 62)(33 41 156 63)(34 42 157 64)(35 43 158 65)(36 44 159 66)(37 45 160 67)(38 46 141 68)(39 47 142 69)(40 48 143 70)
(1 49 88 71)(2 72 89 50)(3 51 90 73)(4 74 91 52)(5 53 92 75)(6 76 93 54)(7 55 94 77)(8 78 95 56)(9 57 96 79)(10 80 97 58)(11 59 98 61)(12 62 99 60)(13 41 100 63)(14 64 81 42)(15 43 82 65)(16 66 83 44)(17 45 84 67)(18 68 85 46)(19 47 86 69)(20 70 87 48)(21 126 144 105)(22 106 145 127)(23 128 146 107)(24 108 147 129)(25 130 148 109)(26 110 149 131)(27 132 150 111)(28 112 151 133)(29 134 152 113)(30 114 153 135)(31 136 154 115)(32 116 155 137)(33 138 156 117)(34 118 157 139)(35 140 158 119)(36 120 159 121)(37 122 160 101)(38 102 141 123)(39 124 142 103)(40 104 143 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 160)(30 159)(31 158)(32 157)(33 156)(34 155)(35 154)(36 153)(37 152)(38 151)(39 150)(40 149)(41 63)(42 62)(43 61)(44 80)(45 79)(46 78)(47 77)(48 76)(49 75)(50 74)(51 73)(52 72)(53 71)(54 70)(55 69)(56 68)(57 67)(58 66)(59 65)(60 64)(81 99)(82 98)(83 97)(84 96)(85 95)(86 94)(87 93)(88 92)(89 91)(101 113)(102 112)(103 111)(104 110)(105 109)(106 108)(114 120)(115 119)(116 118)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)(136 140)(137 139)

G:=sub<Sym(160)| (1,105,88,126)(2,106,89,127)(3,107,90,128)(4,108,91,129)(5,109,92,130)(6,110,93,131)(7,111,94,132)(8,112,95,133)(9,113,96,134)(10,114,97,135)(11,115,98,136)(12,116,99,137)(13,117,100,138)(14,118,81,139)(15,119,82,140)(16,120,83,121)(17,101,84,122)(18,102,85,123)(19,103,86,124)(20,104,87,125)(21,49,144,71)(22,50,145,72)(23,51,146,73)(24,52,147,74)(25,53,148,75)(26,54,149,76)(27,55,150,77)(28,56,151,78)(29,57,152,79)(30,58,153,80)(31,59,154,61)(32,60,155,62)(33,41,156,63)(34,42,157,64)(35,43,158,65)(36,44,159,66)(37,45,160,67)(38,46,141,68)(39,47,142,69)(40,48,143,70), (1,49,88,71)(2,72,89,50)(3,51,90,73)(4,74,91,52)(5,53,92,75)(6,76,93,54)(7,55,94,77)(8,78,95,56)(9,57,96,79)(10,80,97,58)(11,59,98,61)(12,62,99,60)(13,41,100,63)(14,64,81,42)(15,43,82,65)(16,66,83,44)(17,45,84,67)(18,68,85,46)(19,47,86,69)(20,70,87,48)(21,126,144,105)(22,106,145,127)(23,128,146,107)(24,108,147,129)(25,130,148,109)(26,110,149,131)(27,132,150,111)(28,112,151,133)(29,134,152,113)(30,114,153,135)(31,136,154,115)(32,116,155,137)(33,138,156,117)(34,118,157,139)(35,140,158,119)(36,120,159,121)(37,122,160,101)(38,102,141,123)(39,124,142,103)(40,104,143,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,160)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,63)(42,62)(43,61)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,113)(102,112)(103,111)(104,110)(105,109)(106,108)(114,120)(115,119)(116,118)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)>;

G:=Group( (1,105,88,126)(2,106,89,127)(3,107,90,128)(4,108,91,129)(5,109,92,130)(6,110,93,131)(7,111,94,132)(8,112,95,133)(9,113,96,134)(10,114,97,135)(11,115,98,136)(12,116,99,137)(13,117,100,138)(14,118,81,139)(15,119,82,140)(16,120,83,121)(17,101,84,122)(18,102,85,123)(19,103,86,124)(20,104,87,125)(21,49,144,71)(22,50,145,72)(23,51,146,73)(24,52,147,74)(25,53,148,75)(26,54,149,76)(27,55,150,77)(28,56,151,78)(29,57,152,79)(30,58,153,80)(31,59,154,61)(32,60,155,62)(33,41,156,63)(34,42,157,64)(35,43,158,65)(36,44,159,66)(37,45,160,67)(38,46,141,68)(39,47,142,69)(40,48,143,70), (1,49,88,71)(2,72,89,50)(3,51,90,73)(4,74,91,52)(5,53,92,75)(6,76,93,54)(7,55,94,77)(8,78,95,56)(9,57,96,79)(10,80,97,58)(11,59,98,61)(12,62,99,60)(13,41,100,63)(14,64,81,42)(15,43,82,65)(16,66,83,44)(17,45,84,67)(18,68,85,46)(19,47,86,69)(20,70,87,48)(21,126,144,105)(22,106,145,127)(23,128,146,107)(24,108,147,129)(25,130,148,109)(26,110,149,131)(27,132,150,111)(28,112,151,133)(29,134,152,113)(30,114,153,135)(31,136,154,115)(32,116,155,137)(33,138,156,117)(34,118,157,139)(35,140,158,119)(36,120,159,121)(37,122,160,101)(38,102,141,123)(39,124,142,103)(40,104,143,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,160)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,63)(42,62)(43,61)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,113)(102,112)(103,111)(104,110)(105,109)(106,108)(114,120)(115,119)(116,118)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139) );

G=PermutationGroup([(1,105,88,126),(2,106,89,127),(3,107,90,128),(4,108,91,129),(5,109,92,130),(6,110,93,131),(7,111,94,132),(8,112,95,133),(9,113,96,134),(10,114,97,135),(11,115,98,136),(12,116,99,137),(13,117,100,138),(14,118,81,139),(15,119,82,140),(16,120,83,121),(17,101,84,122),(18,102,85,123),(19,103,86,124),(20,104,87,125),(21,49,144,71),(22,50,145,72),(23,51,146,73),(24,52,147,74),(25,53,148,75),(26,54,149,76),(27,55,150,77),(28,56,151,78),(29,57,152,79),(30,58,153,80),(31,59,154,61),(32,60,155,62),(33,41,156,63),(34,42,157,64),(35,43,158,65),(36,44,159,66),(37,45,160,67),(38,46,141,68),(39,47,142,69),(40,48,143,70)], [(1,49,88,71),(2,72,89,50),(3,51,90,73),(4,74,91,52),(5,53,92,75),(6,76,93,54),(7,55,94,77),(8,78,95,56),(9,57,96,79),(10,80,97,58),(11,59,98,61),(12,62,99,60),(13,41,100,63),(14,64,81,42),(15,43,82,65),(16,66,83,44),(17,45,84,67),(18,68,85,46),(19,47,86,69),(20,70,87,48),(21,126,144,105),(22,106,145,127),(23,128,146,107),(24,108,147,129),(25,130,148,109),(26,110,149,131),(27,132,150,111),(28,112,151,133),(29,134,152,113),(30,114,153,135),(31,136,154,115),(32,116,155,137),(33,138,156,117),(34,118,157,139),(35,140,158,119),(36,120,159,121),(37,122,160,101),(38,102,141,123),(39,124,142,103),(40,104,143,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,160),(30,159),(31,158),(32,157),(33,156),(34,155),(35,154),(36,153),(37,152),(38,151),(39,150),(40,149),(41,63),(42,62),(43,61),(44,80),(45,79),(46,78),(47,77),(48,76),(49,75),(50,74),(51,73),(52,72),(53,71),(54,70),(55,69),(56,68),(57,67),(58,66),(59,65),(60,64),(81,99),(82,98),(83,97),(84,96),(85,95),(86,94),(87,93),(88,92),(89,91),(101,113),(102,112),(103,111),(104,110),(105,109),(106,108),(114,120),(115,119),(116,118),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129),(136,140),(137,139)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0040000
0004000
000090
00002832
,
4000000
0400000
001000
000100
00002937
00002612
,
120000
40400000
0040100
0053500
000010
00003540
,
100000
40400000
0040000
005100
000010
00003540

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,28,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,26,0,0,0,0,37,12],[1,40,0,0,0,0,2,40,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,35,0,0,0,0,0,40],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,40,5,0,0,0,0,0,1,0,0,0,0,0,0,1,35,0,0,0,0,0,40] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4H4I4J4K4L4M4N4O4P5A5B10A···10F20A···20H20I···20AF
order1222222224···4444444445510···1020···2020···20
size111110102020202···24441010202020222···22···24···4

65 irreducible representations

dim111111112222222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D202- (1+4)Q8.10D10D5×C4○D4
kernelQ85D20C4×D20C4.D20C42D20D102Q8Q8×C20C2×Q8×D5C2×Q82D5C5×Q8C4×Q8D10C42C4⋊C4C2×Q8Q8C10C2C2
# reps1333311142466216144

In GAP, Magma, Sage, TeX

Q_8\rtimes_5D_{20}
% in TeX

G:=Group("Q8:5D20");
// GroupNames label

G:=SmallGroup(320,1248);
// by ID

G=gap.SmallGroup(320,1248);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,184,675,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽