Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=D4

Direct product G=N×Q with N=C5×Q8 and Q=D4
dρLabelID
C5×D4×Q8160C5xD4xQ8320,1551

Semidirect products G=N:Q with N=C5×Q8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊1D4 = Q82D20φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8):1D4320,433
(C5×Q8)⋊2D4 = D204D4φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8):2D4320,438
(C5×Q8)⋊3D4 = D44D20φ: D4/C2C22 ⊆ Out C5×Q8404+(C5xQ8):3D4320,449
(C5×Q8)⋊4D4 = Dic55SD16φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8):4D4320,790
(C5×Q8)⋊5D4 = D108SD16φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8):5D4320,797
(C5×Q8)⋊6D4 = D207D4φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8):6D4320,799
(C5×Q8)⋊7D4 = D2018D4φ: D4/C2C22 ⊆ Out C5×Q8408+(C5xQ8):7D4320,825
(C5×Q8)⋊8D4 = Q8⋊D20φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8):8D4320,654
(C5×Q8)⋊9D4 = Q8×D20φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8):9D4320,1247
(C5×Q8)⋊10D4 = Q85D20φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8):10D4320,1248
(C5×Q8)⋊11D4 = Q86D20φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8):11D4320,1249
(C5×Q8)⋊12D4 = C5×C4⋊SD16φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8):12D4320,961
(C5×Q8)⋊13D4 = (C5×Q8)⋊13D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):13D4320,854
(C5×Q8)⋊14D4 = (C5×D4)⋊14D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):14D4320,865
(C5×Q8)⋊15D4 = 2+ 1+4⋊D5φ: D4/C22C2 ⊆ Out C5×Q8408+(C5xQ8):15D4320,868
(C5×Q8)⋊16D4 = Q8×C5⋊D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):16D4320,1487
(C5×Q8)⋊17D4 = C10.452- 1+4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):17D4320,1489
(C5×Q8)⋊18D4 = C10.1072- 1+4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):18D4320,1503
(C5×Q8)⋊19D4 = C10.1482+ 1+4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):19D4320,1506
(C5×Q8)⋊20D4 = C5×Q8⋊D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):20D4320,949
(C5×Q8)⋊21D4 = C5×D4⋊D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8):21D4320,950
(C5×Q8)⋊22D4 = C5×D44D4φ: D4/C22C2 ⊆ Out C5×Q8404(C5xQ8):22D4320,954
(C5×Q8)⋊23D4 = C5×Q85D4φ: trivial image160(C5xQ8):23D4320,1550
(C5×Q8)⋊24D4 = C5×Q86D4φ: trivial image160(C5xQ8):24D4320,1552

Non-split extensions G=N.Q with N=C5×Q8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5×Q8).1D4 = D104Q16φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).1D4320,435
(C5×Q8).2D4 = Q8.D20φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).2D4320,437
(C5×Q8).3D4 = M4(2)⋊D10φ: D4/C2C22 ⊆ Out C5×Q8804(C5xQ8).3D4320,452
(C5×Q8).4D4 = D4.9D20φ: D4/C2C22 ⊆ Out C5×Q8804-(C5xQ8).4D4320,453
(C5×Q8).5D4 = D4.10D20φ: D4/C2C22 ⊆ Out C5×Q8804(C5xQ8).5D4320,454
(C5×Q8).6D4 = (C5×Q8).D4φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).6D4320,793
(C5×Q8).7D4 = Dic53Q16φ: D4/C2C22 ⊆ Out C5×Q8320(C5xQ8).7D4320,809
(C5×Q8).8D4 = (C2×Q16)⋊D5φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).8D4320,812
(C5×Q8).9D4 = D105Q16φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).9D4320,813
(C5×Q8).10D4 = D20.17D4φ: D4/C2C22 ⊆ Out C5×Q8160(C5xQ8).10D4320,814
(C5×Q8).11D4 = M4(2).D10φ: D4/C2C22 ⊆ Out C5×Q8808+(C5xQ8).11D4320,826
(C5×Q8).12D4 = M4(2).13D10φ: D4/C2C22 ⊆ Out C5×Q8808-(C5xQ8).12D4320,827
(C5×Q8).13D4 = D20.38D4φ: D4/C2C22 ⊆ Out C5×Q8808-(C5xQ8).13D4320,828
(C5×Q8).14D4 = D20.39D4φ: D4/C2C22 ⊆ Out C5×Q8808+(C5xQ8).14D4320,829
(C5×Q8).15D4 = M4(2).15D10φ: D4/C2C22 ⊆ Out C5×Q8808+(C5xQ8).15D4320,830
(C5×Q8).16D4 = M4(2).16D10φ: D4/C2C22 ⊆ Out C5×Q81608-(C5xQ8).16D4320,831
(C5×Q8).17D4 = D20.40D4φ: D4/C2C22 ⊆ Out C5×Q8808-(C5xQ8).17D4320,832
(C5×Q8).18D4 = Q8.1D20φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8).18D4320,655
(C5×Q8).19D4 = C207Q16φ: D4/C4C2 ⊆ Out C5×Q8320(C5xQ8).19D4320,658
(C5×Q8).20D4 = D4.3D20φ: D4/C4C2 ⊆ Out C5×Q8804(C5xQ8).20D4320,768
(C5×Q8).21D4 = D4.4D20φ: D4/C4C2 ⊆ Out C5×Q8804+(C5xQ8).21D4320,769
(C5×Q8).22D4 = D4.5D20φ: D4/C4C2 ⊆ Out C5×Q81604-(C5xQ8).22D4320,770
(C5×Q8).23D4 = D4.11D20φ: D4/C4C2 ⊆ Out C5×Q8804(C5xQ8).23D4320,1423
(C5×Q8).24D4 = D4.12D20φ: D4/C4C2 ⊆ Out C5×Q8804+(C5xQ8).24D4320,1424
(C5×Q8).25D4 = D4.13D20φ: D4/C4C2 ⊆ Out C5×Q81604-(C5xQ8).25D4320,1425
(C5×Q8).26D4 = C5×C42Q16φ: D4/C4C2 ⊆ Out C5×Q8320(C5xQ8).26D4320,963
(C5×Q8).27D4 = C5×Q8.D4φ: D4/C4C2 ⊆ Out C5×Q8160(C5xQ8).27D4320,965
(C5×Q8).28D4 = C5×D4.3D4φ: D4/C4C2 ⊆ Out C5×Q8804(C5xQ8).28D4320,972
(C5×Q8).29D4 = C5×D4.4D4φ: D4/C4C2 ⊆ Out C5×Q8804(C5xQ8).29D4320,973
(C5×Q8).30D4 = C5×D4.5D4φ: D4/C4C2 ⊆ Out C5×Q81604(C5xQ8).30D4320,974
(C5×Q8).31D4 = (C2×C10)⋊8Q16φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8).31D4320,855
(C5×Q8).32D4 = (C5×D4).32D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8).32D4320,866
(C5×Q8).33D4 = 2+ 1+4.D5φ: D4/C22C2 ⊆ Out C5×Q8808-(C5xQ8).33D4320,869
(C5×Q8).34D4 = 2- 1+42D5φ: D4/C22C2 ⊆ Out C5×Q8808+(C5xQ8).34D4320,872
(C5×Q8).35D4 = 2- 1+4.2D5φ: D4/C22C2 ⊆ Out C5×Q8808-(C5xQ8).35D4320,873
(C5×Q8).36D4 = D20.32C23φ: D4/C22C2 ⊆ Out C5×Q8808+(C5xQ8).36D4320,1507
(C5×Q8).37D4 = D20.33C23φ: D4/C22C2 ⊆ Out C5×Q8808-(C5xQ8).37D4320,1508
(C5×Q8).38D4 = D20.34C23φ: D4/C22C2 ⊆ Out C5×Q8808+(C5xQ8).38D4320,1509
(C5×Q8).39D4 = D20.35C23φ: D4/C22C2 ⊆ Out C5×Q81608-(C5xQ8).39D4320,1510
(C5×Q8).40D4 = C5×C22⋊Q16φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8).40D4320,952
(C5×Q8).41D4 = C5×D4.7D4φ: D4/C22C2 ⊆ Out C5×Q8160(C5xQ8).41D4320,953
(C5×Q8).42D4 = C5×D4.8D4φ: D4/C22C2 ⊆ Out C5×Q8804(C5xQ8).42D4320,955
(C5×Q8).43D4 = C5×D4.9D4φ: D4/C22C2 ⊆ Out C5×Q8804(C5xQ8).43D4320,956
(C5×Q8).44D4 = C5×D4.10D4φ: D4/C22C2 ⊆ Out C5×Q8804(C5xQ8).44D4320,957
(C5×Q8).45D4 = C5×D4○D8φ: trivial image804(C5xQ8).45D4320,1578
(C5×Q8).46D4 = C5×D4○SD16φ: trivial image804(C5xQ8).46D4320,1579
(C5×Q8).47D4 = C5×Q8○D8φ: trivial image1604(C5xQ8).47D4320,1580

׿
×
𝔽