extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).D18 = C2xC9.S4 | φ: D18/C6 → S3 ⊆ Aut C2xC6 | 54 | 6+ | (C2xC6).D18 | 432,224 |
(C2xC6).2D18 = D4xD27 | φ: D18/C9 → C22 ⊆ Aut C2xC6 | 108 | 4+ | (C2xC6).2D18 | 432,47 |
(C2xC6).3D18 = D4:2D27 | φ: D18/C9 → C22 ⊆ Aut C2xC6 | 216 | 4- | (C2xC6).3D18 | 432,48 |
(C2xC6).4D18 = D18.3D6 | φ: D18/C9 → C22 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).4D18 | 432,305 |
(C2xC6).5D18 = D18.4D6 | φ: D18/C9 → C22 ⊆ Aut C2xC6 | 72 | 4- | (C2xC6).5D18 | 432,310 |
(C2xC6).6D18 = C36.27D6 | φ: D18/C9 → C22 ⊆ Aut C2xC6 | 216 | | (C2xC6).6D18 | 432,389 |
(C2xC6).7D18 = C3xD4:2D9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).7D18 | 432,357 |
(C2xC6).8D18 = Dic3xDic9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).8D18 | 432,87 |
(C2xC6).9D18 = Dic9:Dic3 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).9D18 | 432,88 |
(C2xC6).10D18 = C18.Dic6 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).10D18 | 432,89 |
(C2xC6).11D18 = Dic3:Dic9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).11D18 | 432,90 |
(C2xC6).12D18 = D18:Dic3 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).12D18 | 432,91 |
(C2xC6).13D18 = C6.18D36 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).13D18 | 432,92 |
(C2xC6).14D18 = D6:Dic9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).14D18 | 432,93 |
(C2xC6).15D18 = C2xC9:Dic6 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).15D18 | 432,303 |
(C2xC6).16D18 = C2xDic3xD9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).16D18 | 432,304 |
(C2xC6).17D18 = C2xC18.D6 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).17D18 | 432,306 |
(C2xC6).18D18 = C2xC3:D36 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).18D18 | 432,307 |
(C2xC6).19D18 = C2xS3xDic9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).19D18 | 432,308 |
(C2xC6).20D18 = Dic3.D18 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).20D18 | 432,309 |
(C2xC6).21D18 = C2xD6:D9 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).21D18 | 432,311 |
(C2xC6).22D18 = C2xC9:D12 | φ: D18/D9 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).22D18 | 432,312 |
(C2xC6).23D18 = C3xD36:5C2 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 72 | 2 | (C2xC6).23D18 | 432,344 |
(C2xC6).24D18 = C4xDic27 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).24D18 | 432,11 |
(C2xC6).25D18 = Dic27:C4 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).25D18 | 432,12 |
(C2xC6).26D18 = C4:Dic27 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).26D18 | 432,13 |
(C2xC6).27D18 = D54:C4 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).27D18 | 432,14 |
(C2xC6).28D18 = C54.D4 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).28D18 | 432,19 |
(C2xC6).29D18 = C2xDic54 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).29D18 | 432,43 |
(C2xC6).30D18 = C2xC4xD27 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).30D18 | 432,44 |
(C2xC6).31D18 = C2xD108 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).31D18 | 432,45 |
(C2xC6).32D18 = D108:5C2 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | 2 | (C2xC6).32D18 | 432,46 |
(C2xC6).33D18 = C22xDic27 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).33D18 | 432,51 |
(C2xC6).34D18 = C2xC27:D4 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).34D18 | 432,52 |
(C2xC6).35D18 = C4xC9:Dic3 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).35D18 | 432,180 |
(C2xC6).36D18 = C6.Dic18 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).36D18 | 432,181 |
(C2xC6).37D18 = C36:Dic3 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).37D18 | 432,182 |
(C2xC6).38D18 = C6.11D36 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).38D18 | 432,183 |
(C2xC6).39D18 = C62.127D6 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).39D18 | 432,198 |
(C2xC6).40D18 = C23xD27 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).40D18 | 432,227 |
(C2xC6).41D18 = C2xC12.D9 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).41D18 | 432,380 |
(C2xC6).42D18 = C2xC4xC9:S3 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).42D18 | 432,381 |
(C2xC6).43D18 = C2xC36:S3 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).43D18 | 432,382 |
(C2xC6).44D18 = C36.70D6 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).44D18 | 432,383 |
(C2xC6).45D18 = C22xC9:Dic3 | φ: D18/C18 → C2 ⊆ Aut C2xC6 | 432 | | (C2xC6).45D18 | 432,396 |
(C2xC6).46D18 = C12xDic9 | central extension (φ=1) | 144 | | (C2xC6).46D18 | 432,128 |
(C2xC6).47D18 = C3xDic9:C4 | central extension (φ=1) | 144 | | (C2xC6).47D18 | 432,129 |
(C2xC6).48D18 = C3xC4:Dic9 | central extension (φ=1) | 144 | | (C2xC6).48D18 | 432,130 |
(C2xC6).49D18 = C3xD18:C4 | central extension (φ=1) | 144 | | (C2xC6).49D18 | 432,134 |
(C2xC6).50D18 = C3xC18.D4 | central extension (φ=1) | 72 | | (C2xC6).50D18 | 432,164 |
(C2xC6).51D18 = C6xDic18 | central extension (φ=1) | 144 | | (C2xC6).51D18 | 432,340 |
(C2xC6).52D18 = D9xC2xC12 | central extension (φ=1) | 144 | | (C2xC6).52D18 | 432,342 |
(C2xC6).53D18 = C6xD36 | central extension (φ=1) | 144 | | (C2xC6).53D18 | 432,343 |
(C2xC6).54D18 = C2xC6xDic9 | central extension (φ=1) | 144 | | (C2xC6).54D18 | 432,372 |