extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊D18 = S3×C3.S4 | φ: D18/C3 → D6 ⊆ Aut C2×C6 | 36 | 12+ | (C2xC6):D18 | 432,522 |
(C2×C6)⋊2D18 = C6×C3.S4 | φ: D18/C6 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):2D18 | 432,534 |
(C2×C6)⋊3D18 = C2×C32.3S4 | φ: D18/C6 → S3 ⊆ Aut C2×C6 | 54 | | (C2xC6):3D18 | 432,537 |
(C2×C6)⋊4D18 = S3×C9⋊D4 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6):4D18 | 432,313 |
(C2×C6)⋊5D18 = D18⋊D6 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 36 | 4+ | (C2xC6):5D18 | 432,315 |
(C2×C6)⋊6D18 = D4×C9⋊S3 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 108 | | (C2xC6):6D18 | 432,388 |
(C2×C6)⋊7D18 = C3×D4×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6):7D18 | 432,356 |
(C2×C6)⋊8D18 = D9×C3⋊D4 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6):8D18 | 432,314 |
(C2×C6)⋊9D18 = C22×S3×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6):9D18 | 432,544 |
(C2×C6)⋊10D18 = C6×C9⋊D4 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6):10D18 | 432,374 |
(C2×C6)⋊11D18 = C2×C6.D18 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6):11D18 | 432,397 |
(C2×C6)⋊12D18 = C23×C9⋊S3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6):12D18 | 432,560 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).D18 = C2×C9.S4 | φ: D18/C6 → S3 ⊆ Aut C2×C6 | 54 | 6+ | (C2xC6).D18 | 432,224 |
(C2×C6).2D18 = D4×D27 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 108 | 4+ | (C2xC6).2D18 | 432,47 |
(C2×C6).3D18 = D4⋊2D27 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 216 | 4- | (C2xC6).3D18 | 432,48 |
(C2×C6).4D18 = D18.3D6 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).4D18 | 432,305 |
(C2×C6).5D18 = D18.4D6 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 72 | 4- | (C2xC6).5D18 | 432,310 |
(C2×C6).6D18 = C36.27D6 | φ: D18/C9 → C22 ⊆ Aut C2×C6 | 216 | | (C2xC6).6D18 | 432,389 |
(C2×C6).7D18 = C3×D4⋊2D9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).7D18 | 432,357 |
(C2×C6).8D18 = Dic3×Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).8D18 | 432,87 |
(C2×C6).9D18 = Dic9⋊Dic3 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).9D18 | 432,88 |
(C2×C6).10D18 = C18.Dic6 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).10D18 | 432,89 |
(C2×C6).11D18 = Dic3⋊Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).11D18 | 432,90 |
(C2×C6).12D18 = D18⋊Dic3 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).12D18 | 432,91 |
(C2×C6).13D18 = C6.18D36 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).13D18 | 432,92 |
(C2×C6).14D18 = D6⋊Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).14D18 | 432,93 |
(C2×C6).15D18 = C2×C9⋊Dic6 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).15D18 | 432,303 |
(C2×C6).16D18 = C2×Dic3×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).16D18 | 432,304 |
(C2×C6).17D18 = C2×C18.D6 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).17D18 | 432,306 |
(C2×C6).18D18 = C2×C3⋊D36 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).18D18 | 432,307 |
(C2×C6).19D18 = C2×S3×Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).19D18 | 432,308 |
(C2×C6).20D18 = Dic3.D18 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).20D18 | 432,309 |
(C2×C6).21D18 = C2×D6⋊D9 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).21D18 | 432,311 |
(C2×C6).22D18 = C2×C9⋊D12 | φ: D18/D9 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).22D18 | 432,312 |
(C2×C6).23D18 = C3×D36⋊5C2 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).23D18 | 432,344 |
(C2×C6).24D18 = C4×Dic27 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).24D18 | 432,11 |
(C2×C6).25D18 = Dic27⋊C4 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).25D18 | 432,12 |
(C2×C6).26D18 = C4⋊Dic27 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).26D18 | 432,13 |
(C2×C6).27D18 = D54⋊C4 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).27D18 | 432,14 |
(C2×C6).28D18 = C54.D4 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).28D18 | 432,19 |
(C2×C6).29D18 = C2×Dic54 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).29D18 | 432,43 |
(C2×C6).30D18 = C2×C4×D27 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).30D18 | 432,44 |
(C2×C6).31D18 = C2×D108 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).31D18 | 432,45 |
(C2×C6).32D18 = D108⋊5C2 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | 2 | (C2xC6).32D18 | 432,46 |
(C2×C6).33D18 = C22×Dic27 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).33D18 | 432,51 |
(C2×C6).34D18 = C2×C27⋊D4 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).34D18 | 432,52 |
(C2×C6).35D18 = C4×C9⋊Dic3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).35D18 | 432,180 |
(C2×C6).36D18 = C6.Dic18 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).36D18 | 432,181 |
(C2×C6).37D18 = C36⋊Dic3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).37D18 | 432,182 |
(C2×C6).38D18 = C6.11D36 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).38D18 | 432,183 |
(C2×C6).39D18 = C62.127D6 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).39D18 | 432,198 |
(C2×C6).40D18 = C23×D27 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).40D18 | 432,227 |
(C2×C6).41D18 = C2×C12.D9 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).41D18 | 432,380 |
(C2×C6).42D18 = C2×C4×C9⋊S3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).42D18 | 432,381 |
(C2×C6).43D18 = C2×C36⋊S3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).43D18 | 432,382 |
(C2×C6).44D18 = C36.70D6 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).44D18 | 432,383 |
(C2×C6).45D18 = C22×C9⋊Dic3 | φ: D18/C18 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).45D18 | 432,396 |
(C2×C6).46D18 = C12×Dic9 | central extension (φ=1) | 144 | | (C2xC6).46D18 | 432,128 |
(C2×C6).47D18 = C3×Dic9⋊C4 | central extension (φ=1) | 144 | | (C2xC6).47D18 | 432,129 |
(C2×C6).48D18 = C3×C4⋊Dic9 | central extension (φ=1) | 144 | | (C2xC6).48D18 | 432,130 |
(C2×C6).49D18 = C3×D18⋊C4 | central extension (φ=1) | 144 | | (C2xC6).49D18 | 432,134 |
(C2×C6).50D18 = C3×C18.D4 | central extension (φ=1) | 72 | | (C2xC6).50D18 | 432,164 |
(C2×C6).51D18 = C6×Dic18 | central extension (φ=1) | 144 | | (C2xC6).51D18 | 432,340 |
(C2×C6).52D18 = D9×C2×C12 | central extension (φ=1) | 144 | | (C2xC6).52D18 | 432,342 |
(C2×C6).53D18 = C6×D36 | central extension (φ=1) | 144 | | (C2xC6).53D18 | 432,343 |
(C2×C6).54D18 = C2×C6×Dic9 | central extension (φ=1) | 144 | | (C2xC6).54D18 | 432,372 |