Extensions 1→N→G→Q→1 with N=C2xC6 and Q=D18

Direct product G=NxQ with N=C2xC6 and Q=D18
dρLabelID
D9xC22xC6144D9xC2^2xC6432,556

Semidirect products G=N:Q with N=C2xC6 and Q=D18
extensionφ:Q→Aut NdρLabelID
(C2xC6):D18 = S3xC3.S4φ: D18/C3D6 ⊆ Aut C2xC63612+(C2xC6):D18432,522
(C2xC6):2D18 = C6xC3.S4φ: D18/C6S3 ⊆ Aut C2xC6366(C2xC6):2D18432,534
(C2xC6):3D18 = C2xC32.3S4φ: D18/C6S3 ⊆ Aut C2xC654(C2xC6):3D18432,537
(C2xC6):4D18 = S3xC9:D4φ: D18/C9C22 ⊆ Aut C2xC6724(C2xC6):4D18432,313
(C2xC6):5D18 = D18:D6φ: D18/C9C22 ⊆ Aut C2xC6364+(C2xC6):5D18432,315
(C2xC6):6D18 = D4xC9:S3φ: D18/C9C22 ⊆ Aut C2xC6108(C2xC6):6D18432,388
(C2xC6):7D18 = C3xD4xD9φ: D18/D9C2 ⊆ Aut C2xC6724(C2xC6):7D18432,356
(C2xC6):8D18 = D9xC3:D4φ: D18/D9C2 ⊆ Aut C2xC6724(C2xC6):8D18432,314
(C2xC6):9D18 = C22xS3xD9φ: D18/D9C2 ⊆ Aut C2xC672(C2xC6):9D18432,544
(C2xC6):10D18 = C6xC9:D4φ: D18/C18C2 ⊆ Aut C2xC672(C2xC6):10D18432,374
(C2xC6):11D18 = C2xC6.D18φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6):11D18432,397
(C2xC6):12D18 = C23xC9:S3φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6):12D18432,560

Non-split extensions G=N.Q with N=C2xC6 and Q=D18
extensionφ:Q→Aut NdρLabelID
(C2xC6).D18 = C2xC9.S4φ: D18/C6S3 ⊆ Aut C2xC6546+(C2xC6).D18432,224
(C2xC6).2D18 = D4xD27φ: D18/C9C22 ⊆ Aut C2xC61084+(C2xC6).2D18432,47
(C2xC6).3D18 = D4:2D27φ: D18/C9C22 ⊆ Aut C2xC62164-(C2xC6).3D18432,48
(C2xC6).4D18 = D18.3D6φ: D18/C9C22 ⊆ Aut C2xC6724(C2xC6).4D18432,305
(C2xC6).5D18 = D18.4D6φ: D18/C9C22 ⊆ Aut C2xC6724-(C2xC6).5D18432,310
(C2xC6).6D18 = C36.27D6φ: D18/C9C22 ⊆ Aut C2xC6216(C2xC6).6D18432,389
(C2xC6).7D18 = C3xD4:2D9φ: D18/D9C2 ⊆ Aut C2xC6724(C2xC6).7D18432,357
(C2xC6).8D18 = Dic3xDic9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).8D18432,87
(C2xC6).9D18 = Dic9:Dic3φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).9D18432,88
(C2xC6).10D18 = C18.Dic6φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).10D18432,89
(C2xC6).11D18 = Dic3:Dic9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).11D18432,90
(C2xC6).12D18 = D18:Dic3φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).12D18432,91
(C2xC6).13D18 = C6.18D36φ: D18/D9C2 ⊆ Aut C2xC672(C2xC6).13D18432,92
(C2xC6).14D18 = D6:Dic9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).14D18432,93
(C2xC6).15D18 = C2xC9:Dic6φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).15D18432,303
(C2xC6).16D18 = C2xDic3xD9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).16D18432,304
(C2xC6).17D18 = C2xC18.D6φ: D18/D9C2 ⊆ Aut C2xC672(C2xC6).17D18432,306
(C2xC6).18D18 = C2xC3:D36φ: D18/D9C2 ⊆ Aut C2xC672(C2xC6).18D18432,307
(C2xC6).19D18 = C2xS3xDic9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).19D18432,308
(C2xC6).20D18 = Dic3.D18φ: D18/D9C2 ⊆ Aut C2xC6724(C2xC6).20D18432,309
(C2xC6).21D18 = C2xD6:D9φ: D18/D9C2 ⊆ Aut C2xC6144(C2xC6).21D18432,311
(C2xC6).22D18 = C2xC9:D12φ: D18/D9C2 ⊆ Aut C2xC672(C2xC6).22D18432,312
(C2xC6).23D18 = C3xD36:5C2φ: D18/C18C2 ⊆ Aut C2xC6722(C2xC6).23D18432,344
(C2xC6).24D18 = C4xDic27φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).24D18432,11
(C2xC6).25D18 = Dic27:C4φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).25D18432,12
(C2xC6).26D18 = C4:Dic27φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).26D18432,13
(C2xC6).27D18 = D54:C4φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).27D18432,14
(C2xC6).28D18 = C54.D4φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).28D18432,19
(C2xC6).29D18 = C2xDic54φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).29D18432,43
(C2xC6).30D18 = C2xC4xD27φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).30D18432,44
(C2xC6).31D18 = C2xD108φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).31D18432,45
(C2xC6).32D18 = D108:5C2φ: D18/C18C2 ⊆ Aut C2xC62162(C2xC6).32D18432,46
(C2xC6).33D18 = C22xDic27φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).33D18432,51
(C2xC6).34D18 = C2xC27:D4φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).34D18432,52
(C2xC6).35D18 = C4xC9:Dic3φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).35D18432,180
(C2xC6).36D18 = C6.Dic18φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).36D18432,181
(C2xC6).37D18 = C36:Dic3φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).37D18432,182
(C2xC6).38D18 = C6.11D36φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).38D18432,183
(C2xC6).39D18 = C62.127D6φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).39D18432,198
(C2xC6).40D18 = C23xD27φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).40D18432,227
(C2xC6).41D18 = C2xC12.D9φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).41D18432,380
(C2xC6).42D18 = C2xC4xC9:S3φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).42D18432,381
(C2xC6).43D18 = C2xC36:S3φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).43D18432,382
(C2xC6).44D18 = C36.70D6φ: D18/C18C2 ⊆ Aut C2xC6216(C2xC6).44D18432,383
(C2xC6).45D18 = C22xC9:Dic3φ: D18/C18C2 ⊆ Aut C2xC6432(C2xC6).45D18432,396
(C2xC6).46D18 = C12xDic9central extension (φ=1)144(C2xC6).46D18432,128
(C2xC6).47D18 = C3xDic9:C4central extension (φ=1)144(C2xC6).47D18432,129
(C2xC6).48D18 = C3xC4:Dic9central extension (φ=1)144(C2xC6).48D18432,130
(C2xC6).49D18 = C3xD18:C4central extension (φ=1)144(C2xC6).49D18432,134
(C2xC6).50D18 = C3xC18.D4central extension (φ=1)72(C2xC6).50D18432,164
(C2xC6).51D18 = C6xDic18central extension (φ=1)144(C2xC6).51D18432,340
(C2xC6).52D18 = D9xC2xC12central extension (φ=1)144(C2xC6).52D18432,342
(C2xC6).53D18 = C6xD36central extension (φ=1)144(C2xC6).53D18432,343
(C2xC6).54D18 = C2xC6xDic9central extension (φ=1)144(C2xC6).54D18432,372

׿
x
:
Z
F
o
wr
Q
<