Copied to
clipboard

?

G = C4⋊C428D14order 448 = 26·7

11st semidirect product of C4⋊C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C428D14, D145(C4○D4), C22⋊C431D14, (C2×Dic7)⋊21D4, D14⋊D431C2, C22⋊D2820C2, D28⋊C432C2, C23⋊D1416C2, C22.45(D4×D7), D14⋊C427C22, D14⋊Q829C2, (C2×D4).165D14, (C2×C28).73C23, Dic7.49(C2×D4), C14.85(C22×D4), Dic74D420C2, (C2×C14).200C24, Dic7⋊C423C22, C76(C22.19C24), (C4×Dic7)⋊32C22, (C22×C4).322D14, C22.D418D7, C23.27(C22×D7), (C2×Dic14)⋊28C22, (D4×C14).138C22, (C2×D28).156C22, (C22×C14).35C23, C22.221(C23×D7), C23.D7.43C22, C23.23D1421C2, C23.11D1413C2, (C22×C28).368C22, (C2×Dic7).104C23, (C22×Dic7)⋊25C22, (C23×D7).110C22, (C22×D7).208C23, C2.58(C2×D4×D7), C2.62(D7×C4○D4), (D7×C22×C4)⋊24C2, (C2×C4×D7)⋊22C22, (C7×C4⋊C4)⋊26C22, (C2×C14).61(C2×D4), (C2×D42D7)⋊17C2, C14.174(C2×C4○D4), (C2×C7⋊D4)⋊19C22, (C2×C4).63(C22×D7), (C7×C22⋊C4)⋊22C22, (C7×C22.D4)⋊8C2, SmallGroup(448,1109)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C428D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C4⋊C428D14
C7C2×C14 — C4⋊C428D14

Subgroups: 1644 in 330 conjugacy classes, 107 normal (39 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×12], C22, C22 [×2], C22 [×24], C7, C2×C4, C2×C4 [×4], C2×C4 [×23], D4 [×14], Q8 [×2], C23 [×2], C23 [×9], D7 [×5], C14, C14 [×2], C14 [×3], C42 [×2], C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×7], C4⋊C4 [×2], C4⋊C4 [×4], C22×C4, C22×C4 [×11], C2×D4, C2×D4 [×6], C2×Q8, C4○D4 [×4], C24, Dic7 [×4], Dic7 [×3], C28 [×5], D14 [×4], D14 [×15], C2×C14, C2×C14 [×2], C2×C14 [×5], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4, C22.D4, C23×C4, C2×C4○D4, Dic14 [×2], C4×D7 [×10], D28 [×4], C2×Dic7 [×3], C2×Dic7 [×6], C2×Dic7 [×2], C7⋊D4 [×8], C2×C28, C2×C28 [×4], C2×C28 [×2], C7×D4 [×2], C22×D7, C22×D7 [×2], C22×D7 [×6], C22×C14 [×2], C22.19C24, C4×Dic7 [×2], Dic7⋊C4 [×4], D14⋊C4 [×6], C23.D7, C7×C22⋊C4, C7×C22⋊C4 [×2], C7×C4⋊C4 [×2], C2×Dic14, C2×C4×D7, C2×C4×D7 [×4], C2×C4×D7 [×4], C2×D28 [×2], D42D7 [×4], C22×Dic7 [×2], C2×C7⋊D4 [×2], C2×C7⋊D4 [×2], C22×C28, D4×C14, C23×D7, C23.11D14, Dic74D4 [×2], C22⋊D28, D14⋊D4 [×2], D28⋊C4 [×2], D14⋊Q8 [×2], C23.23D14, C23⋊D14, C7×C22.D4, D7×C22×C4, C2×D42D7, C4⋊C428D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×4], C24, D14 [×7], C22×D4, C2×C4○D4 [×2], C22×D7 [×7], C22.19C24, D4×D7 [×2], C23×D7, C2×D4×D7, D7×C4○D4 [×2], C4⋊C428D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=dad=a-1, cac-1=ab2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 105 29 74)(2 99 30 82)(3 107 31 76)(4 101 32 84)(5 109 33 78)(6 103 34 72)(7 111 35 80)(8 66 15 98)(9 60 16 92)(10 68 17 86)(11 62 18 94)(12 70 19 88)(13 64 20 96)(14 58 21 90)(22 59 48 91)(23 67 49 85)(24 61 43 93)(25 69 44 87)(26 63 45 95)(27 57 46 89)(28 65 47 97)(36 108 53 77)(37 102 54 71)(38 110 55 79)(39 104 56 73)(40 112 50 81)(41 106 51 75)(42 100 52 83)
(1 85 40 92)(2 93 41 86)(3 87 42 94)(4 95 36 88)(5 89 37 96)(6 97 38 90)(7 91 39 98)(8 80 22 73)(9 74 23 81)(10 82 24 75)(11 76 25 83)(12 84 26 77)(13 78 27 71)(14 72 28 79)(15 111 48 104)(16 105 49 112)(17 99 43 106)(18 107 44 100)(19 101 45 108)(20 109 46 102)(21 103 47 110)(29 67 50 60)(30 61 51 68)(31 69 52 62)(32 63 53 70)(33 57 54 64)(34 65 55 58)(35 59 56 66)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 50)(7 56)(8 48)(9 47)(10 46)(11 45)(12 44)(13 43)(14 49)(15 22)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(29 38)(30 37)(31 36)(32 42)(33 41)(34 40)(35 39)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(69 70)(71 82)(72 81)(73 80)(74 79)(75 78)(76 77)(83 84)(85 90)(86 89)(87 88)(91 98)(92 97)(93 96)(94 95)(99 102)(100 101)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(112)| (1,105,29,74)(2,99,30,82)(3,107,31,76)(4,101,32,84)(5,109,33,78)(6,103,34,72)(7,111,35,80)(8,66,15,98)(9,60,16,92)(10,68,17,86)(11,62,18,94)(12,70,19,88)(13,64,20,96)(14,58,21,90)(22,59,48,91)(23,67,49,85)(24,61,43,93)(25,69,44,87)(26,63,45,95)(27,57,46,89)(28,65,47,97)(36,108,53,77)(37,102,54,71)(38,110,55,79)(39,104,56,73)(40,112,50,81)(41,106,51,75)(42,100,52,83), (1,85,40,92)(2,93,41,86)(3,87,42,94)(4,95,36,88)(5,89,37,96)(6,97,38,90)(7,91,39,98)(8,80,22,73)(9,74,23,81)(10,82,24,75)(11,76,25,83)(12,84,26,77)(13,78,27,71)(14,72,28,79)(15,111,48,104)(16,105,49,112)(17,99,43,106)(18,107,44,100)(19,101,45,108)(20,109,46,102)(21,103,47,110)(29,67,50,60)(30,61,51,68)(31,69,52,62)(32,63,53,70)(33,57,54,64)(34,65,55,58)(35,59,56,66), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,56)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,49)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,105,29,74)(2,99,30,82)(3,107,31,76)(4,101,32,84)(5,109,33,78)(6,103,34,72)(7,111,35,80)(8,66,15,98)(9,60,16,92)(10,68,17,86)(11,62,18,94)(12,70,19,88)(13,64,20,96)(14,58,21,90)(22,59,48,91)(23,67,49,85)(24,61,43,93)(25,69,44,87)(26,63,45,95)(27,57,46,89)(28,65,47,97)(36,108,53,77)(37,102,54,71)(38,110,55,79)(39,104,56,73)(40,112,50,81)(41,106,51,75)(42,100,52,83), (1,85,40,92)(2,93,41,86)(3,87,42,94)(4,95,36,88)(5,89,37,96)(6,97,38,90)(7,91,39,98)(8,80,22,73)(9,74,23,81)(10,82,24,75)(11,76,25,83)(12,84,26,77)(13,78,27,71)(14,72,28,79)(15,111,48,104)(16,105,49,112)(17,99,43,106)(18,107,44,100)(19,101,45,108)(20,109,46,102)(21,103,47,110)(29,67,50,60)(30,61,51,68)(31,69,52,62)(32,63,53,70)(33,57,54,64)(34,65,55,58)(35,59,56,66), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,56)(8,48)(9,47)(10,46)(11,45)(12,44)(13,43)(14,49)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([(1,105,29,74),(2,99,30,82),(3,107,31,76),(4,101,32,84),(5,109,33,78),(6,103,34,72),(7,111,35,80),(8,66,15,98),(9,60,16,92),(10,68,17,86),(11,62,18,94),(12,70,19,88),(13,64,20,96),(14,58,21,90),(22,59,48,91),(23,67,49,85),(24,61,43,93),(25,69,44,87),(26,63,45,95),(27,57,46,89),(28,65,47,97),(36,108,53,77),(37,102,54,71),(38,110,55,79),(39,104,56,73),(40,112,50,81),(41,106,51,75),(42,100,52,83)], [(1,85,40,92),(2,93,41,86),(3,87,42,94),(4,95,36,88),(5,89,37,96),(6,97,38,90),(7,91,39,98),(8,80,22,73),(9,74,23,81),(10,82,24,75),(11,76,25,83),(12,84,26,77),(13,78,27,71),(14,72,28,79),(15,111,48,104),(16,105,49,112),(17,99,43,106),(18,107,44,100),(19,101,45,108),(20,109,46,102),(21,103,47,110),(29,67,50,60),(30,61,51,68),(31,69,52,62),(32,63,53,70),(33,57,54,64),(34,65,55,58),(35,59,56,66)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,50),(7,56),(8,48),(9,47),(10,46),(11,45),(12,44),(13,43),(14,49),(15,22),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(29,38),(30,37),(31,36),(32,42),(33,41),(34,40),(35,39),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(69,70),(71,82),(72,81),(73,80),(74,79),(75,78),(76,77),(83,84),(85,90),(86,89),(87,88),(91,98),(92,97),(93,96),(94,95),(99,102),(100,101),(103,112),(104,111),(105,110),(106,109),(107,108)])

Matrix representation G ⊆ GL6(𝔽29)

12170000
0170000
001000
000100
000017
0000828
,
2810000
2710000
001000
000100
000017
0000028
,
100000
2280000
0031000
0026000
000010
000001
,
100000
2280000
001000
00202800
0000280
0000211

G:=sub<GL(6,GF(29))| [12,0,0,0,0,0,17,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,7,28],[28,27,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,7,28],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,3,26,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,1,20,0,0,0,0,0,28,0,0,0,0,0,0,28,21,0,0,0,0,0,1] >;

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O14P14Q14R28A···28L28M···28U
order122222222222444444444444444477714···1414···1414141428···2828···28
size111122414141414282222444777714142828282222···24···48884···48···8

70 irreducible representations

dim111111111111222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D14D4×D7D7×C4○D4
kernelC4⋊C428D14C23.11D14Dic74D4C22⋊D28D14⋊D4D28⋊C4D14⋊Q8C23.23D14C23⋊D14C7×C22.D4D7×C22×C4C2×D42D7C2×Dic7C22.D4D14C22⋊C4C4⋊C4C22×C4C2×D4C22C2
# reps1121222111114389633612

In GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{28}D_{14}
% in TeX

G:=Group("C4:C4:28D14");
// GroupNames label

G:=SmallGroup(448,1109);
// by ID

G=gap.SmallGroup(448,1109);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,346,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽