Copied to
clipboard

?

G = D4.12D28order 448 = 26·7

2nd non-split extension by D4 of D28 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.12D28, Q8.12D28, D5612C22, C56.11C23, C28.62C24, M4(2)⋊21D14, D28.25C23, Dic2821C22, Dic14.25C23, C8○D44D7, (C2×C8)⋊7D14, C71(D4○D8), (C2×D56)⋊15C2, (C7×D4).24D4, C28.74(C2×D4), C4.28(C2×D28), (C7×Q8).24D4, D48D144C2, C8⋊D1412C2, (C2×C56)⋊10C22, C4○D4.39D14, C4○D282C22, D567C212C2, C4.59(C23×D7), C8.53(C22×D7), C22.4(C2×D28), (C2×D28)⋊31C22, C56⋊C212C22, C14.29(C22×D4), C2.31(C22×D28), (C2×C28).516C23, (C7×M4(2))⋊23C22, (C7×C8○D4)⋊4C2, (C2×C14).9(C2×D4), (C7×C4○D4).46C22, (C2×C4).227(C22×D7), SmallGroup(448,1205)

Series: Derived Chief Lower central Upper central

C1C28 — D4.12D28
C1C7C14C28D28C2×D28D48D14 — D4.12D28
C7C14C28 — D4.12D28

Subgroups: 1692 in 268 conjugacy classes, 107 normal (16 characteristic)
C1, C2, C2 [×9], C4, C4 [×3], C4 [×2], C22 [×3], C22 [×12], C7, C8, C8 [×3], C2×C4 [×3], C2×C4 [×6], D4 [×3], D4 [×18], Q8, Q8 [×2], C23 [×6], D7 [×6], C14, C14 [×3], C2×C8 [×3], M4(2) [×3], D8 [×9], SD16 [×6], Q16, C2×D4 [×12], C4○D4, C4○D4 [×8], Dic7 [×2], C28, C28 [×3], D14 [×12], C2×C14 [×3], C8○D4, C2×D8 [×3], C4○D8 [×3], C8⋊C22 [×6], 2+ (1+4) [×2], C56, C56 [×3], Dic14 [×2], C4×D7 [×6], D28 [×6], D28 [×6], C7⋊D4 [×6], C2×C28 [×3], C7×D4 [×3], C7×Q8, C22×D7 [×6], D4○D8, C56⋊C2 [×6], D56 [×9], Dic28, C2×C56 [×3], C7×M4(2) [×3], C2×D28 [×6], C4○D28 [×6], D4×D7 [×6], Q82D7 [×2], C7×C4○D4, C2×D56 [×3], D567C2 [×3], C8⋊D14 [×6], C7×C8○D4, D48D14 [×2], D4.12D28

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, D28 [×4], C22×D7 [×7], D4○D8, C2×D28 [×6], C23×D7, C22×D28, D4.12D28

Generators and relations
 G = < a,b,c,d | a4=b2=d2=1, c28=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=a2c27 >

Smallest permutation representation
On 112 points
Generators in S112
(1 103 29 75)(2 104 30 76)(3 105 31 77)(4 106 32 78)(5 107 33 79)(6 108 34 80)(7 109 35 81)(8 110 36 82)(9 111 37 83)(10 112 38 84)(11 57 39 85)(12 58 40 86)(13 59 41 87)(14 60 42 88)(15 61 43 89)(16 62 44 90)(17 63 45 91)(18 64 46 92)(19 65 47 93)(20 66 48 94)(21 67 49 95)(22 68 50 96)(23 69 51 97)(24 70 52 98)(25 71 53 99)(26 72 54 100)(27 73 55 101)(28 74 56 102)
(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)

G:=sub<Sym(112)| (1,103,29,75)(2,104,30,76)(3,105,31,77)(4,106,32,78)(5,107,33,79)(6,108,34,80)(7,109,35,81)(8,110,36,82)(9,111,37,83)(10,112,38,84)(11,57,39,85)(12,58,40,86)(13,59,41,87)(14,60,42,88)(15,61,43,89)(16,62,44,90)(17,63,45,91)(18,64,46,92)(19,65,47,93)(20,66,48,94)(21,67,49,95)(22,68,50,96)(23,69,51,97)(24,70,52,98)(25,71,53,99)(26,72,54,100)(27,73,55,101)(28,74,56,102), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)>;

G:=Group( (1,103,29,75)(2,104,30,76)(3,105,31,77)(4,106,32,78)(5,107,33,79)(6,108,34,80)(7,109,35,81)(8,110,36,82)(9,111,37,83)(10,112,38,84)(11,57,39,85)(12,58,40,86)(13,59,41,87)(14,60,42,88)(15,61,43,89)(16,62,44,90)(17,63,45,91)(18,64,46,92)(19,65,47,93)(20,66,48,94)(21,67,49,95)(22,68,50,96)(23,69,51,97)(24,70,52,98)(25,71,53,99)(26,72,54,100)(27,73,55,101)(28,74,56,102), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107) );

G=PermutationGroup([(1,103,29,75),(2,104,30,76),(3,105,31,77),(4,106,32,78),(5,107,33,79),(6,108,34,80),(7,109,35,81),(8,110,36,82),(9,111,37,83),(10,112,38,84),(11,57,39,85),(12,58,40,86),(13,59,41,87),(14,60,42,88),(15,61,43,89),(16,62,44,90),(17,63,45,91),(18,64,46,92),(19,65,47,93),(20,66,48,94),(21,67,49,95),(22,68,50,96),(23,69,51,97),(24,70,52,98),(25,71,53,99),(26,72,54,100),(27,73,55,101),(28,74,56,102)], [(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107)])

Matrix representation G ⊆ GL4(𝔽113) generated by

001120
000112
1000
0100
,
1000
0100
001120
000112
,
496100
524400
004961
005244
,
907700
902300
009077
009023
G:=sub<GL(4,GF(113))| [0,0,1,0,0,0,0,1,112,0,0,0,0,112,0,0],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[49,52,0,0,61,44,0,0,0,0,49,52,0,0,61,44],[90,90,0,0,77,23,0,0,0,0,90,90,0,0,77,23] >;

82 conjugacy classes

class 1 2A2B2C2D2E···2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122222···24444447778888814141414···1428···2828···2856···5656···56
size1122228···2822222828222224442224···42···24···42···24···4

82 irreducible representations

dim1111112222222244
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14D14D28D28D4○D8D4.12D28
kernelD4.12D28C2×D56D567C2C8⋊D14C7×C8○D4D48D14C7×D4C7×Q8C8○D4C2×C8M4(2)C4○D4D4Q8C7C1
# reps133612313993186212

In GAP, Magma, Sage, TeX

D_4._{12}D_{28}
% in TeX

G:=Group("D4.12D28");
// GroupNames label

G:=SmallGroup(448,1205);
// by ID

G=gap.SmallGroup(448,1205);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,675,192,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^28=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^2*c^27>;
// generators/relations

׿
×
𝔽