# Extensions 1→N→G→Q→1 with N=C3×C5⋊2C8 and Q=C22

Direct product G=N×Q with N=C3×C52C8 and Q=C22
dρLabelID
C2×C6×C52C8480C2xC6xC5:2C8480,713

Semidirect products G=N:Q with N=C3×C52C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C52C8)⋊1C22 = S3×D4⋊D5φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):1C2^2480,555
(C3×C52C8)⋊2C22 = D60.C22φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):2C2^2480,556
(C3×C52C8)⋊3C22 = D15⋊D8φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):3C2^2480,557
(C3×C52C8)⋊4C22 = D30.8D4φ: C22/C1C22 ⊆ Out C3×C52C81208-(C3xC5:2C8):4C2^2480,558
(C3×C52C8)⋊5C22 = S3×D4.D5φ: C22/C1C22 ⊆ Out C3×C52C81208-(C3xC5:2C8):5C2^2480,561
(C3×C52C8)⋊6C22 = Dic10⋊D6φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):6C2^2480,563
(C3×C52C8)⋊7C22 = D2010D6φ: C22/C1C22 ⊆ Out C3×C52C81208-(C3xC5:2C8):7C2^2480,570
(C3×C52C8)⋊8C22 = D12.9D10φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):8C2^2480,572
(C3×C52C8)⋊9C22 = Dic6⋊D10φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):9C2^2480,574
(C3×C52C8)⋊10C22 = D125D10φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):10C2^2480,576
(C3×C52C8)⋊11C22 = S3×Q8⋊D5φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):11C2^2480,579
(C3×C52C8)⋊12C22 = D12⋊D10φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):12C2^2480,580
(C3×C52C8)⋊13C22 = D15⋊SD16φ: C22/C1C22 ⊆ Out C3×C52C81208-(C3xC5:2C8):13C2^2480,581
(C3×C52C8)⋊14C22 = D60⋊C22φ: C22/C1C22 ⊆ Out C3×C52C81208+(C3xC5:2C8):14C2^2480,582
(C3×C52C8)⋊15C22 = C24⋊D10φ: C22/C1C22 ⊆ Out C3×C52C81204+(C3xC5:2C8):15C2^2480,325
(C3×C52C8)⋊16C22 = D24⋊D5φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):16C2^2480,326
(C3×C52C8)⋊17C22 = D6036C22φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):17C2^2480,380
(C3×C52C8)⋊18C22 = C60.38D4φ: C22/C1C22 ⊆ Out C3×C52C81204+(C3xC5:2C8):18C2^2480,381
(C3×C52C8)⋊19C22 = S3×C8⋊D5φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):19C2^2480,321
(C3×C52C8)⋊20C22 = C40⋊D6φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):20C2^2480,322
(C3×C52C8)⋊21C22 = S3×C4.Dic5φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):21C2^2480,363
(C3×C52C8)⋊22C22 = D154M4(2)φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):22C2^2480,368
(C3×C52C8)⋊23C22 = C3×D8⋊D5φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):23C2^2480,704
(C3×C52C8)⋊24C22 = C3×D40⋊C2φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):24C2^2480,707
(C3×C52C8)⋊25C22 = C3×D4.D10φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):25C2^2480,725
(C3×C52C8)⋊26C22 = C3×D4⋊D10φ: C22/C1C22 ⊆ Out C3×C52C81204(C3xC5:2C8):26C2^2480,742
(C3×C52C8)⋊27C22 = D5×C24⋊C2φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):27C2^2480,323
(C3×C52C8)⋊28C22 = D5×D24φ: C22/C2C2 ⊆ Out C3×C52C81204+(C3xC5:2C8):28C2^2480,324
(C3×C52C8)⋊29C22 = C2×C5⋊D24φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):29C2^2480,378
(C3×C52C8)⋊30C22 = C2×D12.D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):30C2^2480,392
(C3×C52C8)⋊31C22 = C2×Dic6⋊D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):31C2^2480,393
(C3×C52C8)⋊32C22 = S3×C8×D5φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):32C2^2480,319
(C3×C52C8)⋊33C22 = D5×C8⋊S3φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):33C2^2480,320
(C3×C52C8)⋊34C22 = C2×S3×C52C8φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):34C2^2480,361
(C3×C52C8)⋊35C22 = C2×D152C8φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):35C2^2480,365
(C3×C52C8)⋊36C22 = C2×D6.Dic5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):36C2^2480,370
(C3×C52C8)⋊37C22 = C2×D30.5C4φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):37C2^2480,371
(C3×C52C8)⋊38C22 = C3×D5×D8φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):38C2^2480,703
(C3×C52C8)⋊39C22 = C3×D5×SD16φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):39C2^2480,706
(C3×C52C8)⋊40C22 = C6×D4⋊D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):40C2^2480,724
(C3×C52C8)⋊41C22 = C6×D4.D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):41C2^2480,726
(C3×C52C8)⋊42C22 = C6×Q8⋊D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):42C2^2480,734
(C3×C52C8)⋊43C22 = C6×C8⋊D5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):43C2^2480,693
(C3×C52C8)⋊44C22 = C3×D5×M4(2)φ: C22/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):44C2^2480,699
(C3×C52C8)⋊45C22 = C6×C4.Dic5φ: C22/C2C2 ⊆ Out C3×C52C8240(C3xC5:2C8):45C2^2480,714
(C3×C52C8)⋊46C22 = D5×C2×C24φ: trivial image240(C3xC5:2C8):46C2^2480,692

Non-split extensions G=N.Q with N=C3×C52C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C52C8).1C22 = C60.10C23φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).1C2^2480,562
(C3×C52C8).2C22 = D30.9D4φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).2C2^2480,564
(C3×C52C8).3C22 = D20.24D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).3C2^2480,569
(C3×C52C8).4C22 = C60.19C23φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).4C2^2480,571
(C3×C52C8).5C22 = D20.10D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).5C2^2480,573
(C3×C52C8).6C22 = D30.11D4φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).6C2^2480,575
(C3×C52C8).7C22 = S3×C5⋊Q16φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).7C2^2480,585
(C3×C52C8).8C22 = Dic10.26D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).8C2^2480,586
(C3×C52C8).9C22 = D15⋊Q16φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).9C2^2480,587
(C3×C52C8).10C22 = C60.C23φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).10C2^2480,588
(C3×C52C8).11C22 = D20.27D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).11C2^2480,593
(C3×C52C8).12C22 = D20.28D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).12C2^2480,594
(C3×C52C8).13C22 = Dic10.27D6φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).13C2^2480,595
(C3×C52C8).14C22 = C60.44C23φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).14C2^2480,596
(C3×C52C8).15C22 = D20.16D6φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).15C2^2480,597
(C3×C52C8).16C22 = D20.17D6φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).16C2^2480,598
(C3×C52C8).17C22 = D12.D10φ: C22/C1C22 ⊆ Out C3×C52C82408+(C3xC5:2C8).17C2^2480,599
(C3×C52C8).18C22 = D30.44D4φ: C22/C1C22 ⊆ Out C3×C52C82408-(C3xC5:2C8).18C2^2480,600
(C3×C52C8).19C22 = Dic60⋊C2φ: C22/C1C22 ⊆ Out C3×C52C82404-(C3xC5:2C8).19C2^2480,336
(C3×C52C8).20C22 = C24.2D10φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).20C2^2480,337
(C3×C52C8).21C22 = C20.D12φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).21C2^2480,397
(C3×C52C8).22C22 = D12.33D10φ: C22/C1C22 ⊆ Out C3×C52C82404-(C3xC5:2C8).22C2^2480,398
(C3×C52C8).23C22 = C40.55D6φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).23C2^2480,343
(C3×C52C8).24C22 = C40.35D6φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).24C2^2480,344
(C3×C52C8).25C22 = D12.Dic5φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).25C2^2480,364
(C3×C52C8).26C22 = D60.4C4φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).26C2^2480,367
(C3×C52C8).27C22 = S3×C5⋊C16φ: C22/C1C22 ⊆ Out C3×C52C82408(C3xC5:2C8).27C2^2480,239
(C3×C52C8).28C22 = D15⋊C16φ: C22/C1C22 ⊆ Out C3×C52C82408(C3xC5:2C8).28C2^2480,240
(C3×C52C8).29C22 = C15⋊M5(2)φ: C22/C1C22 ⊆ Out C3×C52C82408(C3xC5:2C8).29C2^2480,241
(C3×C52C8).30C22 = D30.C8φ: C22/C1C22 ⊆ Out C3×C52C82408(C3xC5:2C8).30C2^2480,242
(C3×C52C8).31C22 = C3×SD16⋊D5φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).31C2^2480,708
(C3×C52C8).32C22 = C3×Q16⋊D5φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).32C2^2480,711
(C3×C52C8).33C22 = C3×C20.C23φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).33C2^2480,735
(C3×C52C8).34C22 = C3×D4.9D10φ: C22/C1C22 ⊆ Out C3×C52C82404(C3xC5:2C8).34C2^2480,744
(C3×C52C8).35C22 = D5×Dic12φ: C22/C2C2 ⊆ Out C3×C52C82404-(C3xC5:2C8).35C2^2480,335
(C3×C52C8).36C22 = C40.31D6φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).36C2^2480,345
(C3×C52C8).37C22 = D247D5φ: C22/C2C2 ⊆ Out C3×C52C82404-(C3xC5:2C8).37C2^2480,346
(C3×C52C8).38C22 = D120⋊C2φ: C22/C2C2 ⊆ Out C3×C52C82404+(C3xC5:2C8).38C2^2480,347
(C3×C52C8).39C22 = C20.60D12φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).39C2^2480,379
(C3×C52C8).40C22 = C2×C5⋊Dic12φ: C22/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).40C2^2480,396
(C3×C52C8).41C22 = C40.54D6φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).41C2^2480,341
(C3×C52C8).42C22 = C40.34D6φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).42C2^2480,342
(C3×C52C8).43C22 = D12.2Dic5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).43C2^2480,362
(C3×C52C8).44C22 = D60.5C4φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).44C2^2480,366
(C3×C52C8).45C22 = C3×D83D5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).45C2^2480,705
(C3×C52C8).46C22 = C3×SD163D5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).46C2^2480,709
(C3×C52C8).47C22 = C3×D5×Q16φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).47C2^2480,710
(C3×C52C8).48C22 = C3×Q8.D10φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).48C2^2480,712
(C3×C52C8).49C22 = C6×C5⋊Q16φ: C22/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).49C2^2480,736
(C3×C52C8).50C22 = C3×D4.8D10φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).50C2^2480,743
(C3×C52C8).51C22 = C3×D20.3C4φ: C22/C2C2 ⊆ Out C3×C52C82402(C3xC5:2C8).51C2^2480,694
(C3×C52C8).52C22 = C3×D4.Dic5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).52C2^2480,741
(C3×C52C8).53C22 = C24.F5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).53C2^2480,294
(C3×C52C8).54C22 = C120.C4φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).54C2^2480,295
(C3×C52C8).55C22 = C2×C15⋊C16φ: C22/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).55C2^2480,302
(C3×C52C8).56C22 = C60.C8φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).56C2^2480,303
(C3×C52C8).57C22 = C3×D5⋊C16φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).57C2^2480,269
(C3×C52C8).58C22 = C3×C8.F5φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).58C2^2480,270
(C3×C52C8).59C22 = C6×C5⋊C16φ: C22/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).59C2^2480,277
(C3×C52C8).60C22 = C3×C20.C8φ: C22/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).60C2^2480,278
(C3×C52C8).61C22 = C3×D20.2C4φ: trivial image2404(C3xC5:2C8).61C2^2480,700

׿
×
𝔽