Copied to
clipboard

G = C42.10Q8order 128 = 27

10th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.10Q8, C42.390D4, C4⋊C84C4, C4.32C4≀C2, (C2×C4).118D8, (C2×C4).52Q16, C4.2(C4.Q8), C4.2(C2.D8), C42.41(C2×C4), (C2×C4).15C42, (C2×C4).92SD16, (C22×C4).724D4, C4.44(D4⋊C4), C4.29(Q8⋊C4), C4⋊M4(2).8C2, C2.14(C426C4), C2.C42.13C4, C2.9(C22.4Q16), (C2×C42).138C22, C22.12(D4⋊C4), C23.143(C22⋊C4), C42.12C4.12C2, C22.15(Q8⋊C4), C2.11(M4(2)⋊4C4), C22.53(C2.C42), (C4×C4⋊C4).3C2, (C2×C4).98(C4⋊C4), (C22×C4).158(C2×C4), (C2×C4).340(C22⋊C4), SmallGroup(128,35)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.10Q8
C1C2C22C2×C4C42C2×C42C42.12C4 — C42.10Q8
C1C22C2×C4 — C42.10Q8
C1C2×C4C2×C42 — C42.10Q8
C1C22C22C2×C42 — C42.10Q8

Generators and relations for C42.10Q8
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=a2b-1c2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b-1, dcd-1=ab2c3 >

Subgroups: 168 in 88 conjugacy classes, 42 normal (34 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×2], C4 [×7], C22 [×3], C22 [×2], C8 [×4], C2×C4 [×10], C2×C4 [×11], C23, C42 [×4], C42 [×2], C4⋊C4 [×4], C2×C8 [×4], M4(2) [×2], C22×C4 [×3], C22×C4 [×2], C2.C42 [×2], C4×C8, C22⋊C8, C4⋊C8 [×4], C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×M4(2), C4×C4⋊C4, C4⋊M4(2), C42.12C4, C42.10Q8
Quotients: C1, C2 [×3], C4 [×6], C22, C2×C4 [×3], D4 [×3], Q8, C42, C22⋊C4 [×3], C4⋊C4 [×3], D8, SD16 [×2], Q16, C2.C42, D4⋊C4 [×2], Q8⋊C4 [×2], C4≀C2 [×2], C4.Q8, C2.D8, C426C4, C22.4Q16, M4(2)⋊4C4, C42.10Q8

Smallest permutation representation of C42.10Q8
On 32 points
Generators in S32
(1 31 15 23)(2 24 16 32)(3 25 9 17)(4 18 10 26)(5 27 11 19)(6 20 12 28)(7 29 13 21)(8 22 14 30)
(1 25 11 21)(2 26 12 22)(3 27 13 23)(4 28 14 24)(5 29 15 17)(6 30 16 18)(7 31 9 19)(8 32 10 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 6 31 28 15 12 23 20)(2 27 32 11 16 19 24 5)(3 4 25 26 9 10 17 18)(7 8 29 30 13 14 21 22)

G:=sub<Sym(32)| (1,31,15,23)(2,24,16,32)(3,25,9,17)(4,18,10,26)(5,27,11,19)(6,20,12,28)(7,29,13,21)(8,22,14,30), (1,25,11,21)(2,26,12,22)(3,27,13,23)(4,28,14,24)(5,29,15,17)(6,30,16,18)(7,31,9,19)(8,32,10,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6,31,28,15,12,23,20)(2,27,32,11,16,19,24,5)(3,4,25,26,9,10,17,18)(7,8,29,30,13,14,21,22)>;

G:=Group( (1,31,15,23)(2,24,16,32)(3,25,9,17)(4,18,10,26)(5,27,11,19)(6,20,12,28)(7,29,13,21)(8,22,14,30), (1,25,11,21)(2,26,12,22)(3,27,13,23)(4,28,14,24)(5,29,15,17)(6,30,16,18)(7,31,9,19)(8,32,10,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6,31,28,15,12,23,20)(2,27,32,11,16,19,24,5)(3,4,25,26,9,10,17,18)(7,8,29,30,13,14,21,22) );

G=PermutationGroup([(1,31,15,23),(2,24,16,32),(3,25,9,17),(4,18,10,26),(5,27,11,19),(6,20,12,28),(7,29,13,21),(8,22,14,30)], [(1,25,11,21),(2,26,12,22),(3,27,13,23),(4,28,14,24),(5,29,15,17),(6,30,16,18),(7,31,9,19),(8,32,10,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,6,31,28,15,12,23,20),(2,27,32,11,16,19,24,5),(3,4,25,26,9,10,17,18),(7,8,29,30,13,14,21,22)])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4J4K···4T8A···8H8I8J8K8L
order12222244444···44···48···88888
size11112211112···24···44···48888

38 irreducible representations

dim11111122222224
type+++++-++-
imageC1C2C2C2C4C4D4Q8D4D8SD16Q16C4≀C2M4(2)⋊4C4
kernelC42.10Q8C4×C4⋊C4C4⋊M4(2)C42.12C4C2.C42C4⋊C8C42C42C22×C4C2×C4C2×C4C2×C4C4C2
# reps11114811224282

Matrix representation of C42.10Q8 in GL4(𝔽17) generated by

13000
0400
00160
00016
,
4000
0400
00162
00161
,
0100
16000
0007
0057
,
0400
16000
00107
0057
G:=sub<GL(4,GF(17))| [13,0,0,0,0,4,0,0,0,0,16,0,0,0,0,16],[4,0,0,0,0,4,0,0,0,0,16,16,0,0,2,1],[0,16,0,0,1,0,0,0,0,0,0,5,0,0,7,7],[0,16,0,0,4,0,0,0,0,0,10,5,0,0,7,7] >;

C42.10Q8 in GAP, Magma, Sage, TeX

C_4^2._{10}Q_8
% in TeX

G:=Group("C4^2.10Q8");
// GroupNames label

G:=SmallGroup(128,35);
// by ID

G=gap.SmallGroup(128,35);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,723,184,248,3924,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=a^2*b^-1*c^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a*b^2*c^3>;
// generators/relations

׿
×
𝔽