p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊7D8, D4⋊1D8, C42.218C23, (C8×D4)⋊5C2, C8⋊1C8⋊3C2, C8⋊4D4⋊3C2, C4⋊D8⋊5C2, C4.59(C2×D8), C4⋊C4.193D4, (C2×C8).339D4, C4.D8⋊5C2, (C2×D4).187D4, C4.84(C4○D8), C2.6(C8⋊7D4), C2.7(C4⋊D8), C4⋊C8.19C22, (C4×C8).49C22, C4.116(C8⋊C22), C2.6(D4.4D4), (C4×D4).275C22, C4⋊1D4.26C22, C22.179(C4⋊D4), (C2×C4).3(C4○D4), (C2×C4).1253(C2×D4), SmallGroup(128,399)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊7D8
G = < a,b,c | a8=b8=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 304 in 102 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4⋊C8, C4×D4, C4⋊1D4, C22×C8, C2×D8, C4.D8, C8⋊1C8, C8×D4, C4⋊D8, C8⋊4D4, C8⋊7D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8⋊C22, C4⋊D8, C8⋊7D4, D4.4D4, C8⋊7D8
Character table of C8⋊7D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ21 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | -2i | 2i | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2i | -2i | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | -2i | 2i | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2i | -2i | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 51 44 17 61 12 29)(2 39 52 43 18 60 13 28)(3 38 53 42 19 59 14 27)(4 37 54 41 20 58 15 26)(5 36 55 48 21 57 16 25)(6 35 56 47 22 64 9 32)(7 34 49 46 23 63 10 31)(8 33 50 45 24 62 11 30)
(2 8)(3 7)(4 6)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 56)(16 55)(18 24)(19 23)(20 22)(25 36)(26 35)(27 34)(28 33)(29 40)(30 39)(31 38)(32 37)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,51,44,17,61,12,29)(2,39,52,43,18,60,13,28)(3,38,53,42,19,59,14,27)(4,37,54,41,20,58,15,26)(5,36,55,48,21,57,16,25)(6,35,56,47,22,64,9,32)(7,34,49,46,23,63,10,31)(8,33,50,45,24,62,11,30), (2,8)(3,7)(4,6)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,56)(16,55)(18,24)(19,23)(20,22)(25,36)(26,35)(27,34)(28,33)(29,40)(30,39)(31,38)(32,37)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,51,44,17,61,12,29)(2,39,52,43,18,60,13,28)(3,38,53,42,19,59,14,27)(4,37,54,41,20,58,15,26)(5,36,55,48,21,57,16,25)(6,35,56,47,22,64,9,32)(7,34,49,46,23,63,10,31)(8,33,50,45,24,62,11,30), (2,8)(3,7)(4,6)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,56)(16,55)(18,24)(19,23)(20,22)(25,36)(26,35)(27,34)(28,33)(29,40)(30,39)(31,38)(32,37)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,51,44,17,61,12,29),(2,39,52,43,18,60,13,28),(3,38,53,42,19,59,14,27),(4,37,54,41,20,58,15,26),(5,36,55,48,21,57,16,25),(6,35,56,47,22,64,9,32),(7,34,49,46,23,63,10,31),(8,33,50,45,24,62,11,30)], [(2,8),(3,7),(4,6),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,56),(16,55),(18,24),(19,23),(20,22),(25,36),(26,35),(27,34),(28,33),(29,40),(30,39),(31,38),(32,37),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57)]])
Matrix representation of C8⋊7D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,11,3,0,0,11,0],[3,3,0,0,14,3,0,0,0,0,16,1,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;
C8⋊7D8 in GAP, Magma, Sage, TeX
C_8\rtimes_7D_8
% in TeX
G:=Group("C8:7D8");
// GroupNames label
G:=SmallGroup(128,399);
// by ID
G=gap.SmallGroup(128,399);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,288,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export