Copied to
clipboard

G = M4(2).48D4order 128 = 27

12nd non-split extension by M4(2) of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).48D4, C8⋊C224C4, C4○D4.46D4, (C2×C8).323D4, C4.119(C4×D4), C22.9(C4×D4), C4.97C22≀C2, (C2×D4).206D4, C4.9(C4⋊D4), (C2×Q8).164D4, C4.C425C2, D4.9(C22⋊C4), M4(2).5(C2×C4), Q8.9(C22⋊C4), C22.C425C2, C2.2(D4.3D4), C2.2(D4.4D4), C23.263(C4○D4), C23.36D431C2, (C22×C4).691C23, (C22×C8).391C22, (C22×D4).31C22, C22.122(C4⋊D4), C2.46(C23.23D4), (C2×M4(2)).318C22, C22.7(C22.D4), (C2×C8○D4)⋊15C2, C4○D4.16(C2×C4), (C2×D4).87(C2×C4), (C2×C4).242(C2×D4), (C2×C8⋊C22).4C2, C4.23(C2×C22⋊C4), (C2×D4⋊C4)⋊45C2, (C2×C4).59(C4○D4), (C2×C4.D4)⋊19C2, (C2×C4⋊C4).66C22, (C2×C4).13(C22×C4), (C2×C4○D4).265C22, SmallGroup(128,639)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2).48D4
C1C2C4C2×C4C22×C4C2×C4○D4C2×C8○D4 — M4(2).48D4
C1C2C2×C4 — M4(2).48D4
C1C22C22×C4 — M4(2).48D4
C1C2C2C22×C4 — M4(2).48D4

Generators and relations for M4(2).48D4
 G = < a,b,c,d | a8=b2=c4=1, d2=a2b, bab=a5, cac-1=ab, dad-1=a5b, bc=cb, dbd-1=a4b, dcd-1=a2bc-1 >

Subgroups: 372 in 166 conjugacy classes, 56 normal (38 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×3], C22 [×3], C22 [×14], C8 [×7], C2×C4 [×6], C2×C4 [×7], D4 [×2], D4 [×11], Q8 [×2], Q8, C23, C23 [×7], C4⋊C4 [×2], C2×C8 [×2], C2×C8 [×9], M4(2) [×4], M4(2) [×8], D8 [×4], SD16 [×4], C22×C4, C22×C4 [×2], C2×D4, C2×D4 [×2], C2×D4 [×6], C2×Q8, C4○D4 [×4], C4○D4 [×2], C24, C4.D4 [×2], D4⋊C4 [×3], Q8⋊C4, C2×C4⋊C4, C22×C8, C22×C8, C2×M4(2) [×3], C2×M4(2), C8○D4 [×4], C2×D8, C2×SD16, C8⋊C22 [×4], C8⋊C22 [×2], C22×D4, C2×C4○D4, C4.C42, C22.C42, C2×C4.D4, C2×D4⋊C4, C23.36D4, C2×C8○D4, C2×C8⋊C22, M4(2).48D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], C2×C22⋊C4, C4×D4 [×2], C22≀C2, C4⋊D4 [×2], C22.D4, C23.23D4, D4.3D4, D4.4D4, M4(2).48D4

Smallest permutation representation of M4(2).48D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 5)(3 7)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)
(1 16 29 22)(2 9 30 23)(3 14 31 20)(4 15 32 21)(5 12 25 18)(6 13 26 19)(7 10 27 24)(8 11 28 17)
(1 6 7 8 5 2 3 4)(9 18 11 24 13 22 15 20)(10 19 16 21 14 23 12 17)(25 30 31 32 29 26 27 28)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,16,29,22)(2,9,30,23)(3,14,31,20)(4,15,32,21)(5,12,25,18)(6,13,26,19)(7,10,27,24)(8,11,28,17), (1,6,7,8,5,2,3,4)(9,18,11,24,13,22,15,20)(10,19,16,21,14,23,12,17)(25,30,31,32,29,26,27,28)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,16,29,22)(2,9,30,23)(3,14,31,20)(4,15,32,21)(5,12,25,18)(6,13,26,19)(7,10,27,24)(8,11,28,17), (1,6,7,8,5,2,3,4)(9,18,11,24,13,22,15,20)(10,19,16,21,14,23,12,17)(25,30,31,32,29,26,27,28) );

G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,5),(3,7),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31)], [(1,16,29,22),(2,9,30,23),(3,14,31,20),(4,15,32,21),(5,12,25,18),(6,13,26,19),(7,10,27,24),(8,11,28,17)], [(1,6,7,8,5,2,3,4),(9,18,11,24,13,22,15,20),(10,19,16,21,14,23,12,17),(25,30,31,32,29,26,27,28)])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H8A8B8C8D8E···8J8K8L8M8N
order12222222224444444488888···88888
size11112244882222448822224···48888

32 irreducible representations

dim111111111222222244
type++++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D4D4D4D4C4○D4C4○D4D4.3D4D4.4D4
kernelM4(2).48D4C4.C42C22.C42C2×C4.D4C2×D4⋊C4C23.36D4C2×C8○D4C2×C8⋊C22C8⋊C22C2×C8M4(2)C2×D4C2×Q8C4○D4C2×C4C23C2C2
# reps111111118221122222

Matrix representation of M4(2).48D4 in GL6(𝔽17)

010000
1600000
0000611
000030
0011600
0014000
,
1600000
0160000
0016000
0001600
000010
000001
,
0130000
1300000
000600
003000
0000116
0000146
,
1600000
010000
0000116
0000146
000600
003000

G:=sub<GL(6,GF(17))| [0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,14,0,0,0,0,6,0,0,0,6,3,0,0,0,0,11,0,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,3,0,0,0,0,6,0,0,0,0,0,0,0,11,14,0,0,0,0,6,6],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,6,0,0,0,11,14,0,0,0,0,6,6,0,0] >;

M4(2).48D4 in GAP, Magma, Sage, TeX

M_4(2)._{48}D_4
% in TeX

G:=Group("M4(2).48D4");
// GroupNames label

G:=SmallGroup(128,639);
// by ID

G=gap.SmallGroup(128,639);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,2019,1018,521,1411,718,172,2028,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=a^2*b,b*a*b=a^5,c*a*c^-1=a*b,d*a*d^-1=a^5*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=a^2*b*c^-1>;
// generators/relations

׿
×
𝔽