p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q16⋊9D4, C42.37C23, C4.1242+ (1+4), (D4×Q8)⋊3C2, C8⋊9D4⋊7C2, C2.54(D42), C8.33(C2×D4), C8⋊8D4⋊19C2, C4⋊C4.149D4, Q8.20(C2×D4), Q8⋊D4⋊16C2, C4⋊2Q16⋊35C2, (C2×D4).308D4, C8.2D4⋊19C2, C8.D4⋊20C2, C4⋊C8.93C22, (C2×C8).87C23, Q8⋊5D4.1C2, C22⋊C4.41D4, C2.38(Q8○D8), C4.84(C22×D4), Q16⋊C4⋊19C2, D4.7D4⋊36C2, C4⋊C4.209C23, (C2×C4).468C24, Q8.D4⋊36C2, C22⋊Q16⋊27C2, (C22×Q16)⋊20C2, C23.462(C2×D4), C4⋊Q8.134C22, C8⋊C4.37C22, C4.Q8.52C22, D4⋊C4.9C22, (C4×D4).144C22, (C2×D4).208C23, C4⋊D4.59C22, C22⋊C8.71C22, C22⋊3(C8.C22), (C2×Q16).81C22, (C4×Q8).138C22, (C2×Q8).387C23, C22⋊Q8.58C22, (C22×C8).284C22, (C22×C4).319C23, Q8⋊C4.66C22, (C2×SD16).48C22, C4.4D4.53C22, C22.728(C22×D4), (C22×Q8).329C22, (C2×M4(2)).103C22, (C2×C4).592(C2×D4), (C2×C8.C22)⋊28C2, C2.71(C2×C8.C22), (C2×C4○D4).185C22, SmallGroup(128,2002)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 448 in 236 conjugacy classes, 96 normal (84 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×13], C22, C22 [×2], C22 [×8], C8 [×2], C8 [×3], C2×C4 [×5], C2×C4 [×19], D4 [×8], Q8 [×4], Q8 [×14], C23 [×2], C23, C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4 [×3], C4⋊C4 [×7], C2×C8 [×4], C2×C8 [×2], M4(2) [×2], SD16 [×5], Q16 [×4], Q16 [×9], C22×C4 [×2], C22×C4 [×4], C2×D4 [×2], C2×D4 [×2], C2×Q8 [×5], C2×Q8 [×12], C4○D4 [×3], C8⋊C4, C22⋊C8 [×2], D4⋊C4, Q8⋊C4 [×5], C4⋊C8, C4.Q8, C4×D4, C4×D4 [×2], C4×Q8 [×2], C4⋊D4, C4⋊D4, C22⋊Q8 [×3], C22⋊Q8 [×3], C4.4D4, C4.4D4, C4⋊Q8, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16 [×3], C2×Q16 [×6], C2×Q16 [×4], C8.C22 [×4], C22×Q8 [×3], C2×C4○D4, C8⋊9D4, Q16⋊C4, Q8⋊D4, C22⋊Q16 [×2], D4.7D4, C4⋊2Q16, Q8.D4, C8⋊8D4, C8.D4, C8.2D4, Q8⋊5D4, D4×Q8, C22×Q16, C2×C8.C22, Q16⋊9D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C24, C8.C22 [×2], C22×D4 [×2], 2+ (1+4), D42, C2×C8.C22, Q8○D8, Q16⋊9D4
Generators and relations
G = < a,b,c,d | a8=c4=d2=1, b2=a4, bab-1=a-1, cac-1=dad=a3, bc=cb, bd=db, dcd=c-1 >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 30 5 26)(2 29 6 25)(3 28 7 32)(4 27 8 31)(9 35 13 39)(10 34 14 38)(11 33 15 37)(12 40 16 36)(17 49 21 53)(18 56 22 52)(19 55 23 51)(20 54 24 50)(41 62 45 58)(42 61 46 57)(43 60 47 64)(44 59 48 63)
(1 34 19 48)(2 37 20 43)(3 40 21 46)(4 35 22 41)(5 38 23 44)(6 33 24 47)(7 36 17 42)(8 39 18 45)(9 56 58 31)(10 51 59 26)(11 54 60 29)(12 49 61 32)(13 52 62 27)(14 55 63 30)(15 50 64 25)(16 53 57 28)
(2 4)(3 7)(6 8)(9 64)(10 59)(11 62)(12 57)(13 60)(14 63)(15 58)(16 61)(17 21)(18 24)(20 22)(25 31)(27 29)(28 32)(33 45)(34 48)(35 43)(36 46)(37 41)(38 44)(39 47)(40 42)(49 53)(50 56)(52 54)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30,5,26)(2,29,6,25)(3,28,7,32)(4,27,8,31)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63), (1,34,19,48)(2,37,20,43)(3,40,21,46)(4,35,22,41)(5,38,23,44)(6,33,24,47)(7,36,17,42)(8,39,18,45)(9,56,58,31)(10,51,59,26)(11,54,60,29)(12,49,61,32)(13,52,62,27)(14,55,63,30)(15,50,64,25)(16,53,57,28), (2,4)(3,7)(6,8)(9,64)(10,59)(11,62)(12,57)(13,60)(14,63)(15,58)(16,61)(17,21)(18,24)(20,22)(25,31)(27,29)(28,32)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42)(49,53)(50,56)(52,54)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30,5,26)(2,29,6,25)(3,28,7,32)(4,27,8,31)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63), (1,34,19,48)(2,37,20,43)(3,40,21,46)(4,35,22,41)(5,38,23,44)(6,33,24,47)(7,36,17,42)(8,39,18,45)(9,56,58,31)(10,51,59,26)(11,54,60,29)(12,49,61,32)(13,52,62,27)(14,55,63,30)(15,50,64,25)(16,53,57,28), (2,4)(3,7)(6,8)(9,64)(10,59)(11,62)(12,57)(13,60)(14,63)(15,58)(16,61)(17,21)(18,24)(20,22)(25,31)(27,29)(28,32)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42)(49,53)(50,56)(52,54) );
G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,30,5,26),(2,29,6,25),(3,28,7,32),(4,27,8,31),(9,35,13,39),(10,34,14,38),(11,33,15,37),(12,40,16,36),(17,49,21,53),(18,56,22,52),(19,55,23,51),(20,54,24,50),(41,62,45,58),(42,61,46,57),(43,60,47,64),(44,59,48,63)], [(1,34,19,48),(2,37,20,43),(3,40,21,46),(4,35,22,41),(5,38,23,44),(6,33,24,47),(7,36,17,42),(8,39,18,45),(9,56,58,31),(10,51,59,26),(11,54,60,29),(12,49,61,32),(13,52,62,27),(14,55,63,30),(15,50,64,25),(16,53,57,28)], [(2,4),(3,7),(6,8),(9,64),(10,59),(11,62),(12,57),(13,60),(14,63),(15,58),(16,61),(17,21),(18,24),(20,22),(25,31),(27,29),(28,32),(33,45),(34,48),(35,43),(36,46),(37,41),(38,44),(39,47),(40,42),(49,53),(50,56),(52,54)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 4 | 13 |
0 | 0 | 3 | 14 | 13 | 13 |
0 | 0 | 4 | 4 | 3 | 14 |
0 | 0 | 4 | 13 | 3 | 3 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 7 |
0 | 0 | 1 | 0 | 10 | 0 |
0 | 0 | 0 | 10 | 0 | 1 |
0 | 0 | 7 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,14,3,4,4,0,0,14,14,4,13,0,0,4,13,3,3,0,0,13,13,14,3],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,7,0,0,1,0,10,0,0,0,0,10,0,1,0,0,7,0,1,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
Character table of Q16⋊9D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ (1+4) |
ρ26 | 4 | -4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ27 | 4 | -4 | -4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | symplectic lifted from Q8○D8, Schur index 2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | symplectic lifted from Q8○D8, Schur index 2 |
In GAP, Magma, Sage, TeX
Q_{16}\rtimes_9D_4
% in TeX
G:=Group("Q16:9D4");
// GroupNames label
G:=SmallGroup(128,2002);
// by ID
G=gap.SmallGroup(128,2002);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,346,248,2804,1411,375,172]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^4=d^2=1,b^2=a^4,b*a*b^-1=a^-1,c*a*c^-1=d*a*d=a^3,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations