Copied to
clipboard

G = Q8.3SD16order 128 = 27

3rd non-split extension by Q8 of SD16 acting via SD16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8.3SD16, C42.231C23, C82C8.3C2, C4⋊C4.206D4, (C2×C8).314D4, (C8×Q8).13C2, C4.71(C4○D8), C4⋊C8.25C22, Q8⋊Q8.7C2, (C2×Q8).153D4, C42Q16.6C2, C4.43(C2×SD16), C4⋊Q8.54C22, C2.15(C88D4), (C4×C8).256C22, C4.10D8.11C2, C4.92(C8.C22), C2.9(Q8.D4), C4.SD16.11C2, (C4×Q8).268C22, C2.11(D4.5D4), C22.192(C4⋊D4), (C2×C4).16(C4○D4), (C2×C4).1266(C2×D4), SmallGroup(128,412)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q8.3SD16
C1C2C22C2×C4C42C4×Q8C8×Q8 — Q8.3SD16
C1C22C42 — Q8.3SD16
C1C22C42 — Q8.3SD16
C1C22C22C42 — Q8.3SD16

Generators and relations for Q8.3SD16
 G = < a,b,c,d | a4=c8=1, b2=d2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a2c3 >

Subgroups: 152 in 75 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C82C8, C8×Q8, C42Q16, Q8⋊Q8, C4.SD16, Q8.3SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8.C22, Q8.D4, C88D4, D4.5D4, Q8.3SD16

Character table of Q8.3SD16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111222244444161622224444448888
ρ111111111111111111111111111111    trivial
ρ211111111-1-1-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ31111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ411111111-1-1-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ611111111-1-1-11-1-1-11111-1-1-111-11111    linear of order 2
ρ71111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ811111111-1-1-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ922222-22-2000-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ102222-22-222-2-2-220000000000000000    orthogonal lifted from D4
ρ112222-22-22-222-2-20000000000000000    orthogonal lifted from D4
ρ1222222-22-2000-20002222000-2-200000    orthogonal lifted from D4
ρ132222-2-2-2-2000200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ142222-2-2-2-200020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ1522-2-2020-202-20000--2-2-2--2--2-2-2-2--2--20000    complex lifted from SD16
ρ1622-2-2020-20-220000-2--2--2-2--2-2-2--2-2--20000    complex lifted from SD16
ρ172-22-2-202000000002i-2i2i-2i0000002--2-2-2    complex lifted from C4○D8
ρ1822-2-20-2022i000-2i00--2-2-2--22-22--2-2-20000    complex lifted from C4○D8
ρ1922-2-20-202-2i0002i00-2--2--2-22-22-2--2-20000    complex lifted from C4○D8
ρ202-22-2-20200000000-2i2i-2i2i000000-2--22-2    complex lifted from C4○D8
ρ2122-2-2020-20-220000--2-2-2--2-2--2--2-2--2-20000    complex lifted from SD16
ρ222-22-2-202000000002i-2i2i-2i000000-2-22--2    complex lifted from C4○D8
ρ2322-2-2020-202-20000-2--2--2-2-2--2--2--2-2-20000    complex lifted from SD16
ρ2422-2-20-202-2i0002i00--2-2-2--2-22-2--2-220000    complex lifted from C4○D8
ρ2522-2-20-2022i000-2i00-2--2--2-2-22-2-2--220000    complex lifted from C4○D8
ρ262-22-2-20200000000-2i2i-2i2i0000002-2-2--2    complex lifted from C4○D8
ρ274-44-440-40000000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-4-44000000000002222-22-220000000000    symplectic lifted from D4.5D4, Schur index 2
ρ294-4-4400000000000-22-2222220000000000    symplectic lifted from D4.5D4, Schur index 2

Smallest permutation representation of Q8.3SD16
Regular action on 128 points
Generators in S128
(1 100 17 63)(2 101 18 64)(3 102 19 57)(4 103 20 58)(5 104 21 59)(6 97 22 60)(7 98 23 61)(8 99 24 62)(9 107 125 116)(10 108 126 117)(11 109 127 118)(12 110 128 119)(13 111 121 120)(14 112 122 113)(15 105 123 114)(16 106 124 115)(25 80 54 65)(26 73 55 66)(27 74 56 67)(28 75 49 68)(29 76 50 69)(30 77 51 70)(31 78 52 71)(32 79 53 72)(33 91 46 83)(34 92 47 84)(35 93 48 85)(36 94 41 86)(37 95 42 87)(38 96 43 88)(39 89 44 81)(40 90 45 82)
(1 26 17 55)(2 27 18 56)(3 28 19 49)(4 29 20 50)(5 30 21 51)(6 31 22 52)(7 32 23 53)(8 25 24 54)(9 89 125 81)(10 90 126 82)(11 91 127 83)(12 92 128 84)(13 93 121 85)(14 94 122 86)(15 95 123 87)(16 96 124 88)(33 118 46 109)(34 119 47 110)(35 120 48 111)(36 113 41 112)(37 114 42 105)(38 115 43 106)(39 116 44 107)(40 117 45 108)(57 75 102 68)(58 76 103 69)(59 77 104 70)(60 78 97 71)(61 79 98 72)(62 80 99 65)(63 73 100 66)(64 74 101 67)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 117 17 108)(2 111 18 120)(3 115 19 106)(4 109 20 118)(5 113 21 112)(6 107 22 116)(7 119 23 110)(8 105 24 114)(9 60 125 97)(10 100 126 63)(11 58 127 103)(12 98 128 61)(13 64 121 101)(14 104 122 59)(15 62 123 99)(16 102 124 57)(25 95 54 87)(26 82 55 90)(27 93 56 85)(28 88 49 96)(29 91 50 83)(30 86 51 94)(31 89 52 81)(32 84 53 92)(33 69 46 76)(34 79 47 72)(35 67 48 74)(36 77 41 70)(37 65 42 80)(38 75 43 68)(39 71 44 78)(40 73 45 66)

G:=sub<Sym(128)| (1,100,17,63)(2,101,18,64)(3,102,19,57)(4,103,20,58)(5,104,21,59)(6,97,22,60)(7,98,23,61)(8,99,24,62)(9,107,125,116)(10,108,126,117)(11,109,127,118)(12,110,128,119)(13,111,121,120)(14,112,122,113)(15,105,123,114)(16,106,124,115)(25,80,54,65)(26,73,55,66)(27,74,56,67)(28,75,49,68)(29,76,50,69)(30,77,51,70)(31,78,52,71)(32,79,53,72)(33,91,46,83)(34,92,47,84)(35,93,48,85)(36,94,41,86)(37,95,42,87)(38,96,43,88)(39,89,44,81)(40,90,45,82), (1,26,17,55)(2,27,18,56)(3,28,19,49)(4,29,20,50)(5,30,21,51)(6,31,22,52)(7,32,23,53)(8,25,24,54)(9,89,125,81)(10,90,126,82)(11,91,127,83)(12,92,128,84)(13,93,121,85)(14,94,122,86)(15,95,123,87)(16,96,124,88)(33,118,46,109)(34,119,47,110)(35,120,48,111)(36,113,41,112)(37,114,42,105)(38,115,43,106)(39,116,44,107)(40,117,45,108)(57,75,102,68)(58,76,103,69)(59,77,104,70)(60,78,97,71)(61,79,98,72)(62,80,99,65)(63,73,100,66)(64,74,101,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,17,108)(2,111,18,120)(3,115,19,106)(4,109,20,118)(5,113,21,112)(6,107,22,116)(7,119,23,110)(8,105,24,114)(9,60,125,97)(10,100,126,63)(11,58,127,103)(12,98,128,61)(13,64,121,101)(14,104,122,59)(15,62,123,99)(16,102,124,57)(25,95,54,87)(26,82,55,90)(27,93,56,85)(28,88,49,96)(29,91,50,83)(30,86,51,94)(31,89,52,81)(32,84,53,92)(33,69,46,76)(34,79,47,72)(35,67,48,74)(36,77,41,70)(37,65,42,80)(38,75,43,68)(39,71,44,78)(40,73,45,66)>;

G:=Group( (1,100,17,63)(2,101,18,64)(3,102,19,57)(4,103,20,58)(5,104,21,59)(6,97,22,60)(7,98,23,61)(8,99,24,62)(9,107,125,116)(10,108,126,117)(11,109,127,118)(12,110,128,119)(13,111,121,120)(14,112,122,113)(15,105,123,114)(16,106,124,115)(25,80,54,65)(26,73,55,66)(27,74,56,67)(28,75,49,68)(29,76,50,69)(30,77,51,70)(31,78,52,71)(32,79,53,72)(33,91,46,83)(34,92,47,84)(35,93,48,85)(36,94,41,86)(37,95,42,87)(38,96,43,88)(39,89,44,81)(40,90,45,82), (1,26,17,55)(2,27,18,56)(3,28,19,49)(4,29,20,50)(5,30,21,51)(6,31,22,52)(7,32,23,53)(8,25,24,54)(9,89,125,81)(10,90,126,82)(11,91,127,83)(12,92,128,84)(13,93,121,85)(14,94,122,86)(15,95,123,87)(16,96,124,88)(33,118,46,109)(34,119,47,110)(35,120,48,111)(36,113,41,112)(37,114,42,105)(38,115,43,106)(39,116,44,107)(40,117,45,108)(57,75,102,68)(58,76,103,69)(59,77,104,70)(60,78,97,71)(61,79,98,72)(62,80,99,65)(63,73,100,66)(64,74,101,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,17,108)(2,111,18,120)(3,115,19,106)(4,109,20,118)(5,113,21,112)(6,107,22,116)(7,119,23,110)(8,105,24,114)(9,60,125,97)(10,100,126,63)(11,58,127,103)(12,98,128,61)(13,64,121,101)(14,104,122,59)(15,62,123,99)(16,102,124,57)(25,95,54,87)(26,82,55,90)(27,93,56,85)(28,88,49,96)(29,91,50,83)(30,86,51,94)(31,89,52,81)(32,84,53,92)(33,69,46,76)(34,79,47,72)(35,67,48,74)(36,77,41,70)(37,65,42,80)(38,75,43,68)(39,71,44,78)(40,73,45,66) );

G=PermutationGroup([[(1,100,17,63),(2,101,18,64),(3,102,19,57),(4,103,20,58),(5,104,21,59),(6,97,22,60),(7,98,23,61),(8,99,24,62),(9,107,125,116),(10,108,126,117),(11,109,127,118),(12,110,128,119),(13,111,121,120),(14,112,122,113),(15,105,123,114),(16,106,124,115),(25,80,54,65),(26,73,55,66),(27,74,56,67),(28,75,49,68),(29,76,50,69),(30,77,51,70),(31,78,52,71),(32,79,53,72),(33,91,46,83),(34,92,47,84),(35,93,48,85),(36,94,41,86),(37,95,42,87),(38,96,43,88),(39,89,44,81),(40,90,45,82)], [(1,26,17,55),(2,27,18,56),(3,28,19,49),(4,29,20,50),(5,30,21,51),(6,31,22,52),(7,32,23,53),(8,25,24,54),(9,89,125,81),(10,90,126,82),(11,91,127,83),(12,92,128,84),(13,93,121,85),(14,94,122,86),(15,95,123,87),(16,96,124,88),(33,118,46,109),(34,119,47,110),(35,120,48,111),(36,113,41,112),(37,114,42,105),(38,115,43,106),(39,116,44,107),(40,117,45,108),(57,75,102,68),(58,76,103,69),(59,77,104,70),(60,78,97,71),(61,79,98,72),(62,80,99,65),(63,73,100,66),(64,74,101,67)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,117,17,108),(2,111,18,120),(3,115,19,106),(4,109,20,118),(5,113,21,112),(6,107,22,116),(7,119,23,110),(8,105,24,114),(9,60,125,97),(10,100,126,63),(11,58,127,103),(12,98,128,61),(13,64,121,101),(14,104,122,59),(15,62,123,99),(16,102,124,57),(25,95,54,87),(26,82,55,90),(27,93,56,85),(28,88,49,96),(29,91,50,83),(30,86,51,94),(31,89,52,81),(32,84,53,92),(33,69,46,76),(34,79,47,72),(35,67,48,74),(36,77,41,70),(37,65,42,80),(38,75,43,68),(39,71,44,78),(40,73,45,66)]])

Matrix representation of Q8.3SD16 in GL4(𝔽17) generated by

1000
0100
00130
0004
,
16000
01600
0001
00160
,
0500
7700
0040
0004
,
01400
11000
0009
00150
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,4],[16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[0,7,0,0,5,7,0,0,0,0,4,0,0,0,0,4],[0,11,0,0,14,0,0,0,0,0,0,15,0,0,9,0] >;

Q8.3SD16 in GAP, Magma, Sage, TeX

Q_8._3{\rm SD}_{16}
% in TeX

G:=Group("Q8.3SD16");
// GroupNames label

G:=SmallGroup(128,412);
// by ID

G=gap.SmallGroup(128,412);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,512,422,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^3>;
// generators/relations

Export

Character table of Q8.3SD16 in TeX

׿
×
𝔽