direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8⋊D4, C24.107D4, (C2×C8)⋊8D4, C8⋊4(C2×D4), C4⋊C4.20C23, C2.D8⋊68C22, (C2×C4).255C24, (C2×C8).247C23, (C22×SD16)⋊1C2, (C2×D4).59C23, (C22×C4).425D4, C4.149(C22×D4), C23.861(C2×D4), C22⋊Q8⋊66C22, (C2×Q8).47C23, C4.110(C4⋊D4), D4⋊C4⋊90C22, Q8⋊C4⋊94C22, (C2×SD16)⋊54C22, (C22×M4(2))⋊1C2, C4⋊D4.148C22, (C2×M4(2))⋊50C22, (C22×C8).255C22, (C23×C4).547C22, C22.515(C22×D4), C22.174(C4⋊D4), C22.115(C8⋊C22), (C22×C4).1534C23, (C22×D4).346C22, (C22×Q8).279C22, C22.104(C8.C22), (C2×C2.D8)⋊40C2, C4.22(C2×C4○D4), (C2×C4).471(C2×D4), C2.73(C2×C4⋊D4), C2.17(C2×C8⋊C22), (C2×C22⋊Q8)⋊55C2, (C2×D4⋊C4)⋊53C2, (C2×Q8⋊C4)⋊54C2, (C2×C4⋊D4).54C2, C2.17(C2×C8.C22), (C2×C4).701(C4○D4), (C2×C4⋊C4).588C22, SmallGroup(128,1783)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8⋊D4
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b3, dcd=c-1 >
Subgroups: 564 in 272 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, D4⋊C4, Q8⋊C4, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22×C8, C2×M4(2), C2×M4(2), C2×SD16, C2×SD16, C23×C4, C22×D4, C22×D4, C22×Q8, C2×D4⋊C4, C2×Q8⋊C4, C2×C2.D8, C8⋊D4, C2×C4⋊D4, C2×C22⋊Q8, C22×M4(2), C22×SD16, C2×C8⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C8⋊C22, C8.C22, C22×D4, C2×C4○D4, C8⋊D4, C2×C4⋊D4, C2×C8⋊C22, C2×C8.C22, C2×C8⋊D4
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 55)(18 56)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 48)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 62)(34 63)(35 64)(36 57)(37 58)(38 59)(39 60)(40 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47 21 38)(2 46 22 37)(3 45 23 36)(4 44 24 35)(5 43 17 34)(6 42 18 33)(7 41 19 40)(8 48 20 39)(9 31 52 58)(10 30 53 57)(11 29 54 64)(12 28 55 63)(13 27 56 62)(14 26 49 61)(15 25 50 60)(16 32 51 59)
(1 55)(2 50)(3 53)(4 56)(5 51)(6 54)(7 49)(8 52)(9 20)(10 23)(11 18)(12 21)(13 24)(14 19)(15 22)(16 17)(25 46)(26 41)(27 44)(28 47)(29 42)(30 45)(31 48)(32 43)(33 64)(34 59)(35 62)(36 57)(37 60)(38 63)(39 58)(40 61)
G:=sub<Sym(64)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,21,38)(2,46,22,37)(3,45,23,36)(4,44,24,35)(5,43,17,34)(6,42,18,33)(7,41,19,40)(8,48,20,39)(9,31,52,58)(10,30,53,57)(11,29,54,64)(12,28,55,63)(13,27,56,62)(14,26,49,61)(15,25,50,60)(16,32,51,59), (1,55)(2,50)(3,53)(4,56)(5,51)(6,54)(7,49)(8,52)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17)(25,46)(26,41)(27,44)(28,47)(29,42)(30,45)(31,48)(32,43)(33,64)(34,59)(35,62)(36,57)(37,60)(38,63)(39,58)(40,61)>;
G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,21,38)(2,46,22,37)(3,45,23,36)(4,44,24,35)(5,43,17,34)(6,42,18,33)(7,41,19,40)(8,48,20,39)(9,31,52,58)(10,30,53,57)(11,29,54,64)(12,28,55,63)(13,27,56,62)(14,26,49,61)(15,25,50,60)(16,32,51,59), (1,55)(2,50)(3,53)(4,56)(5,51)(6,54)(7,49)(8,52)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17)(25,46)(26,41)(27,44)(28,47)(29,42)(30,45)(31,48)(32,43)(33,64)(34,59)(35,62)(36,57)(37,60)(38,63)(39,58)(40,61) );
G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,55),(18,56),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,48),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,62),(34,63),(35,64),(36,57),(37,58),(38,59),(39,60),(40,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47,21,38),(2,46,22,37),(3,45,23,36),(4,44,24,35),(5,43,17,34),(6,42,18,33),(7,41,19,40),(8,48,20,39),(9,31,52,58),(10,30,53,57),(11,29,54,64),(12,28,55,63),(13,27,56,62),(14,26,49,61),(15,25,50,60),(16,32,51,59)], [(1,55),(2,50),(3,53),(4,56),(5,51),(6,54),(7,49),(8,52),(9,20),(10,23),(11,18),(12,21),(13,24),(14,19),(15,22),(16,17),(25,46),(26,41),(27,44),(28,47),(29,42),(30,45),(31,48),(32,43),(33,64),(34,59),(35,62),(36,57),(37,60),(38,63),(39,58),(40,61)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | C8⋊C22 | C8.C22 |
kernel | C2×C8⋊D4 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C2.D8 | C8⋊D4 | C2×C4⋊D4 | C2×C22⋊Q8 | C22×M4(2) | C22×SD16 | C2×C8 | C22×C4 | C24 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 4 | 3 | 1 | 4 | 2 | 2 |
Matrix representation of C2×C8⋊D4 ►in GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 3 | 0 | 11 |
0 | 0 | 0 | 0 | 3 | 14 | 11 | 6 |
0 | 0 | 0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 11 | 14 | 6 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 16 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 16 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 16 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,14,3,3,3,0,0,0,0,3,14,14,11,0,0,0,0,0,11,0,14,0,0,0,0,11,6,0,6],[0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,16,0,0,0,0,0,2,0,1],[16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1] >;
C2×C8⋊D4 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes D_4
% in TeX
G:=Group("C2xC8:D4");
// GroupNames label
G:=SmallGroup(128,1783);
// by ID
G=gap.SmallGroup(128,1783);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,723,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^3,d*c*d=c^-1>;
// generators/relations