Copied to
clipboard

G = C9×C22⋊Q8order 288 = 25·32

Direct product of C9 and C22⋊Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C9×C22⋊Q8, C36.62D4, C4⋊C43C18, (C2×C18)⋊2Q8, (Q8×C18)⋊8C2, (C2×Q8)⋊3C18, C4.13(D4×C9), C2.6(D4×C18), C6.69(C6×D4), C6.20(C6×Q8), C2.3(Q8×C18), C222(Q8×C9), C18.69(C2×D4), C12.72(C3×D4), (C6×Q8).16C6, C18.20(C2×Q8), C22⋊C4.1C18, (C22×C4).7C18, C18.42(C4○D4), (C22×C36).15C2, C23.13(C2×C18), (C2×C18).77C23, (C22×C12).29C6, (C2×C36).123C22, (C22×C18).28C22, C22.12(C22×C18), (C9×C4⋊C4)⋊12C2, C3.(C3×C22⋊Q8), C2.5(C9×C4○D4), (C3×C4⋊C4).13C6, (C2×C6).4(C3×Q8), (C3×C22⋊Q8).C3, (C2×C4).3(C2×C18), C6.42(C3×C4○D4), (C2×C12).64(C2×C6), (C9×C22⋊C4).4C2, (C3×C22⋊C4).7C6, (C2×C6).82(C22×C6), (C22×C6).47(C2×C6), SmallGroup(288,172)

Series: Derived Chief Lower central Upper central

C1C22 — C9×C22⋊Q8
C1C3C6C2×C6C2×C18C2×C36Q8×C18 — C9×C22⋊Q8
C1C22 — C9×C22⋊Q8
C1C2×C18 — C9×C22⋊Q8

Generators and relations for C9×C22⋊Q8
 G = < a,b,c,d,e | a9=b2=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 150 in 111 conjugacy classes, 72 normal (36 characteristic)
C1, C2 [×3], C2 [×2], C3, C4 [×2], C4 [×5], C22, C22 [×2], C22 [×2], C6 [×3], C6 [×2], C2×C4 [×2], C2×C4 [×4], C2×C4 [×2], Q8 [×2], C23, C9, C12 [×2], C12 [×5], C2×C6, C2×C6 [×2], C2×C6 [×2], C22⋊C4 [×2], C4⋊C4, C4⋊C4 [×2], C22×C4, C2×Q8, C18 [×3], C18 [×2], C2×C12 [×2], C2×C12 [×4], C2×C12 [×2], C3×Q8 [×2], C22×C6, C22⋊Q8, C36 [×2], C36 [×5], C2×C18, C2×C18 [×2], C2×C18 [×2], C3×C22⋊C4 [×2], C3×C4⋊C4, C3×C4⋊C4 [×2], C22×C12, C6×Q8, C2×C36 [×2], C2×C36 [×4], C2×C36 [×2], Q8×C9 [×2], C22×C18, C3×C22⋊Q8, C9×C22⋊C4 [×2], C9×C4⋊C4, C9×C4⋊C4 [×2], C22×C36, Q8×C18, C9×C22⋊Q8
Quotients: C1, C2 [×7], C3, C22 [×7], C6 [×7], D4 [×2], Q8 [×2], C23, C9, C2×C6 [×7], C2×D4, C2×Q8, C4○D4, C18 [×7], C3×D4 [×2], C3×Q8 [×2], C22×C6, C22⋊Q8, C2×C18 [×7], C6×D4, C6×Q8, C3×C4○D4, D4×C9 [×2], Q8×C9 [×2], C22×C18, C3×C22⋊Q8, D4×C18, Q8×C18, C9×C4○D4, C9×C22⋊Q8

Smallest permutation representation of C9×C22⋊Q8
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 28)(8 29)(9 30)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 19)(17 20)(18 21)(37 52)(38 53)(39 54)(40 46)(41 47)(42 48)(43 49)(44 50)(45 51)(55 81)(56 73)(57 74)(58 75)(59 76)(60 77)(61 78)(62 79)(63 80)(64 86)(65 87)(66 88)(67 89)(68 90)(69 82)(70 83)(71 84)(72 85)(91 104)(92 105)(93 106)(94 107)(95 108)(96 100)(97 101)(98 102)(99 103)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(127 140)(128 141)(129 142)(130 143)(131 144)(132 136)(133 137)(134 138)(135 139)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 37)(7 38)(8 39)(9 40)(10 138)(11 139)(12 140)(13 141)(14 142)(15 143)(16 144)(17 136)(18 137)(19 131)(20 132)(21 133)(22 134)(23 135)(24 127)(25 128)(26 129)(27 130)(28 53)(29 54)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)(55 90)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 77)(65 78)(66 79)(67 80)(68 81)(69 73)(70 74)(71 75)(72 76)(91 126)(92 118)(93 119)(94 120)(95 121)(96 122)(97 123)(98 124)(99 125)(100 113)(101 114)(102 115)(103 116)(104 117)(105 109)(106 110)(107 111)(108 112)
(1 57 31 74)(2 58 32 75)(3 59 33 76)(4 60 34 77)(5 61 35 78)(6 62 36 79)(7 63 28 80)(8 55 29 81)(9 56 30 73)(10 98 134 115)(11 99 135 116)(12 91 127 117)(13 92 128 109)(14 93 129 110)(15 94 130 111)(16 95 131 112)(17 96 132 113)(18 97 133 114)(19 108 144 121)(20 100 136 122)(21 101 137 123)(22 102 138 124)(23 103 139 125)(24 104 140 126)(25 105 141 118)(26 106 142 119)(27 107 143 120)(37 88 52 66)(38 89 53 67)(39 90 54 68)(40 82 46 69)(41 83 47 70)(42 84 48 71)(43 85 49 72)(44 86 50 64)(45 87 51 65)
(1 93 31 110)(2 94 32 111)(3 95 33 112)(4 96 34 113)(5 97 35 114)(6 98 36 115)(7 99 28 116)(8 91 29 117)(9 92 30 109)(10 79 134 62)(11 80 135 63)(12 81 127 55)(13 73 128 56)(14 74 129 57)(15 75 130 58)(16 76 131 59)(17 77 132 60)(18 78 133 61)(19 85 144 72)(20 86 136 64)(21 87 137 65)(22 88 138 66)(23 89 139 67)(24 90 140 68)(25 82 141 69)(26 83 142 70)(27 84 143 71)(37 124 52 102)(38 125 53 103)(39 126 54 104)(40 118 46 105)(41 119 47 106)(42 120 48 107)(43 121 49 108)(44 122 50 100)(45 123 51 101)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51)(55,81)(56,73)(57,74)(58,75)(59,76)(60,77)(61,78)(62,79)(63,80)(64,86)(65,87)(66,88)(67,89)(68,90)(69,82)(70,83)(71,84)(72,85)(91,104)(92,105)(93,106)(94,107)(95,108)(96,100)(97,101)(98,102)(99,103)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(127,140)(128,141)(129,142)(130,143)(131,144)(132,136)(133,137)(134,138)(135,139), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,138)(11,139)(12,140)(13,141)(14,142)(15,143)(16,144)(17,136)(18,137)(19,131)(20,132)(21,133)(22,134)(23,135)(24,127)(25,128)(26,129)(27,130)(28,53)(29,54)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(55,90)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,77)(65,78)(66,79)(67,80)(68,81)(69,73)(70,74)(71,75)(72,76)(91,126)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,113)(101,114)(102,115)(103,116)(104,117)(105,109)(106,110)(107,111)(108,112), (1,57,31,74)(2,58,32,75)(3,59,33,76)(4,60,34,77)(5,61,35,78)(6,62,36,79)(7,63,28,80)(8,55,29,81)(9,56,30,73)(10,98,134,115)(11,99,135,116)(12,91,127,117)(13,92,128,109)(14,93,129,110)(15,94,130,111)(16,95,131,112)(17,96,132,113)(18,97,133,114)(19,108,144,121)(20,100,136,122)(21,101,137,123)(22,102,138,124)(23,103,139,125)(24,104,140,126)(25,105,141,118)(26,106,142,119)(27,107,143,120)(37,88,52,66)(38,89,53,67)(39,90,54,68)(40,82,46,69)(41,83,47,70)(42,84,48,71)(43,85,49,72)(44,86,50,64)(45,87,51,65), (1,93,31,110)(2,94,32,111)(3,95,33,112)(4,96,34,113)(5,97,35,114)(6,98,36,115)(7,99,28,116)(8,91,29,117)(9,92,30,109)(10,79,134,62)(11,80,135,63)(12,81,127,55)(13,73,128,56)(14,74,129,57)(15,75,130,58)(16,76,131,59)(17,77,132,60)(18,78,133,61)(19,85,144,72)(20,86,136,64)(21,87,137,65)(22,88,138,66)(23,89,139,67)(24,90,140,68)(25,82,141,69)(26,83,142,70)(27,84,143,71)(37,124,52,102)(38,125,53,103)(39,126,54,104)(40,118,46,105)(41,119,47,106)(42,120,48,107)(43,121,49,108)(44,122,50,100)(45,123,51,101)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51)(55,81)(56,73)(57,74)(58,75)(59,76)(60,77)(61,78)(62,79)(63,80)(64,86)(65,87)(66,88)(67,89)(68,90)(69,82)(70,83)(71,84)(72,85)(91,104)(92,105)(93,106)(94,107)(95,108)(96,100)(97,101)(98,102)(99,103)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(127,140)(128,141)(129,142)(130,143)(131,144)(132,136)(133,137)(134,138)(135,139), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,138)(11,139)(12,140)(13,141)(14,142)(15,143)(16,144)(17,136)(18,137)(19,131)(20,132)(21,133)(22,134)(23,135)(24,127)(25,128)(26,129)(27,130)(28,53)(29,54)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(55,90)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,77)(65,78)(66,79)(67,80)(68,81)(69,73)(70,74)(71,75)(72,76)(91,126)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,113)(101,114)(102,115)(103,116)(104,117)(105,109)(106,110)(107,111)(108,112), (1,57,31,74)(2,58,32,75)(3,59,33,76)(4,60,34,77)(5,61,35,78)(6,62,36,79)(7,63,28,80)(8,55,29,81)(9,56,30,73)(10,98,134,115)(11,99,135,116)(12,91,127,117)(13,92,128,109)(14,93,129,110)(15,94,130,111)(16,95,131,112)(17,96,132,113)(18,97,133,114)(19,108,144,121)(20,100,136,122)(21,101,137,123)(22,102,138,124)(23,103,139,125)(24,104,140,126)(25,105,141,118)(26,106,142,119)(27,107,143,120)(37,88,52,66)(38,89,53,67)(39,90,54,68)(40,82,46,69)(41,83,47,70)(42,84,48,71)(43,85,49,72)(44,86,50,64)(45,87,51,65), (1,93,31,110)(2,94,32,111)(3,95,33,112)(4,96,34,113)(5,97,35,114)(6,98,36,115)(7,99,28,116)(8,91,29,117)(9,92,30,109)(10,79,134,62)(11,80,135,63)(12,81,127,55)(13,73,128,56)(14,74,129,57)(15,75,130,58)(16,76,131,59)(17,77,132,60)(18,78,133,61)(19,85,144,72)(20,86,136,64)(21,87,137,65)(22,88,138,66)(23,89,139,67)(24,90,140,68)(25,82,141,69)(26,83,142,70)(27,84,143,71)(37,124,52,102)(38,125,53,103)(39,126,54,104)(40,118,46,105)(41,119,47,106)(42,120,48,107)(43,121,49,108)(44,122,50,100)(45,123,51,101) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,28),(8,29),(9,30),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,19),(17,20),(18,21),(37,52),(38,53),(39,54),(40,46),(41,47),(42,48),(43,49),(44,50),(45,51),(55,81),(56,73),(57,74),(58,75),(59,76),(60,77),(61,78),(62,79),(63,80),(64,86),(65,87),(66,88),(67,89),(68,90),(69,82),(70,83),(71,84),(72,85),(91,104),(92,105),(93,106),(94,107),(95,108),(96,100),(97,101),(98,102),(99,103),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(127,140),(128,141),(129,142),(130,143),(131,144),(132,136),(133,137),(134,138),(135,139)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,37),(7,38),(8,39),(9,40),(10,138),(11,139),(12,140),(13,141),(14,142),(15,143),(16,144),(17,136),(18,137),(19,131),(20,132),(21,133),(22,134),(23,135),(24,127),(25,128),(26,129),(27,130),(28,53),(29,54),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52),(55,90),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,77),(65,78),(66,79),(67,80),(68,81),(69,73),(70,74),(71,75),(72,76),(91,126),(92,118),(93,119),(94,120),(95,121),(96,122),(97,123),(98,124),(99,125),(100,113),(101,114),(102,115),(103,116),(104,117),(105,109),(106,110),(107,111),(108,112)], [(1,57,31,74),(2,58,32,75),(3,59,33,76),(4,60,34,77),(5,61,35,78),(6,62,36,79),(7,63,28,80),(8,55,29,81),(9,56,30,73),(10,98,134,115),(11,99,135,116),(12,91,127,117),(13,92,128,109),(14,93,129,110),(15,94,130,111),(16,95,131,112),(17,96,132,113),(18,97,133,114),(19,108,144,121),(20,100,136,122),(21,101,137,123),(22,102,138,124),(23,103,139,125),(24,104,140,126),(25,105,141,118),(26,106,142,119),(27,107,143,120),(37,88,52,66),(38,89,53,67),(39,90,54,68),(40,82,46,69),(41,83,47,70),(42,84,48,71),(43,85,49,72),(44,86,50,64),(45,87,51,65)], [(1,93,31,110),(2,94,32,111),(3,95,33,112),(4,96,34,113),(5,97,35,114),(6,98,36,115),(7,99,28,116),(8,91,29,117),(9,92,30,109),(10,79,134,62),(11,80,135,63),(12,81,127,55),(13,73,128,56),(14,74,129,57),(15,75,130,58),(16,76,131,59),(17,77,132,60),(18,78,133,61),(19,85,144,72),(20,86,136,64),(21,87,137,65),(22,88,138,66),(23,89,139,67),(24,90,140,68),(25,82,141,69),(26,83,142,70),(27,84,143,71),(37,124,52,102),(38,125,53,103),(39,126,54,104),(40,118,46,105),(41,119,47,106),(42,120,48,107),(43,121,49,108),(44,122,50,100),(45,123,51,101)])

126 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F4G4H6A···6F6G6H6I6J9A···9F12A···12H12I···12P18A···18R18S···18AD36A···36X36Y···36AV
order12222233444444446···666669···912···1212···1218···1818···1836···3636···36
size11112211222244441···122221···12···24···41···12···22···24···4

126 irreducible representations

dim111111111111111222222222
type++++++-
imageC1C2C2C2C2C3C6C6C6C6C9C18C18C18C18D4Q8C4○D4C3×D4C3×Q8C3×C4○D4D4×C9Q8×C9C9×C4○D4
kernelC9×C22⋊Q8C9×C22⋊C4C9×C4⋊C4C22×C36Q8×C18C3×C22⋊Q8C3×C22⋊C4C3×C4⋊C4C22×C12C6×Q8C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8C36C2×C18C18C12C2×C6C6C4C22C2
# reps12311246226121866222444121212

Matrix representation of C9×C22⋊Q8 in GL4(𝔽37) generated by

16000
01600
00100
00010
,
1000
123600
003624
0001
,
36000
03600
00360
00036
,
1000
0100
0064
00031
,
363100
0100
00113
003436
G:=sub<GL(4,GF(37))| [16,0,0,0,0,16,0,0,0,0,10,0,0,0,0,10],[1,12,0,0,0,36,0,0,0,0,36,0,0,0,24,1],[36,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,6,0,0,0,4,31],[36,0,0,0,31,1,0,0,0,0,1,34,0,0,13,36] >;

C9×C22⋊Q8 in GAP, Magma, Sage, TeX

C_9\times C_2^2\rtimes Q_8
% in TeX

G:=Group("C9xC2^2:Q8");
// GroupNames label

G:=SmallGroup(288,172);
// by ID

G=gap.SmallGroup(288,172);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,168,365,176,1094,360]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^2=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽