metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.702- (1+4), C10.352+ (1+4), C4⋊C4.91D10, C4⋊D4.8D5, (D4×Dic5)⋊18C2, C22⋊C4.6D10, (C2×D4).154D10, C20.48D4⋊43C2, (C2×C10).146C24, (C2×C20).625C23, (C22×C4).221D10, C4⋊Dic5.45C22, C2.37(D4⋊6D10), C23.12(C22×D5), Dic5.Q8⋊12C2, (D4×C10).120C22, C22.6(D4⋊2D5), C23.D10⋊16C2, (C22×C10).17C23, (C2×Dic5).67C23, C22.167(C23×D5), Dic5.14D4⋊17C2, C23.D5.23C22, C23.18D10⋊21C2, (C22×C20).311C22, C5⋊3(C22.33C24), (C4×Dic5).101C22, (C2×Dic10).35C22, C2.28(D4.10D10), C10.D4.159C22, (C22×Dic5).107C22, C10.82(C2×C4○D4), (C5×C4⋊D4).8C2, C2.34(C2×D4⋊2D5), (C2×C10).22(C4○D4), (C2×C10.D4)⋊29C2, (C5×C4⋊C4).142C22, (C2×C4).174(C22×D5), (C5×C22⋊C4).11C22, SmallGroup(320,1274)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 670 in 218 conjugacy classes, 95 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C22, C22 [×2], C22 [×8], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×14], D4 [×5], Q8, C23, C23 [×2], C10 [×3], C10 [×4], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×13], C22×C4, C22×C4 [×4], C2×D4, C2×D4 [×2], C2×Q8, Dic5 [×8], C20 [×4], C2×C10, C2×C10 [×2], C2×C10 [×8], C2×C4⋊C4, C4×D4 [×2], C4⋊D4, C22⋊Q8 [×3], C22.D4 [×4], C42.C2 [×2], C42⋊2C2 [×2], Dic10, C2×Dic5 [×8], C2×Dic5 [×5], C2×C20 [×2], C2×C20 [×2], C2×C20, C5×D4 [×5], C22×C10, C22×C10 [×2], C22.33C24, C4×Dic5 [×2], C10.D4 [×10], C4⋊Dic5, C4⋊Dic5 [×2], C23.D5 [×8], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C22×Dic5 [×2], C22×Dic5 [×2], C22×C20, D4×C10, D4×C10 [×2], Dic5.14D4 [×2], C23.D10 [×2], Dic5.Q8 [×2], C2×C10.D4, C20.48D4, D4×Dic5 [×2], C23.18D10 [×4], C5×C4⋊D4, C10.702- (1+4)
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.33C24, D4⋊2D5 [×2], C23×D5, C2×D4⋊2D5, D4⋊6D10, D4.10D10, C10.702- (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=c2=1, d2=a5b2, e2=b2, ab=ba, ac=ca, dad-1=eae-1=a-1, cbc=b-1, bd=db, ebe-1=a5b, cd=dc, ce=ec, ede-1=b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 86 30 73)(2 87 21 74)(3 88 22 75)(4 89 23 76)(5 90 24 77)(6 81 25 78)(7 82 26 79)(8 83 27 80)(9 84 28 71)(10 85 29 72)(11 106 153 93)(12 107 154 94)(13 108 155 95)(14 109 156 96)(15 110 157 97)(16 101 158 98)(17 102 159 99)(18 103 160 100)(19 104 151 91)(20 105 152 92)(31 51 43 63)(32 52 44 64)(33 53 45 65)(34 54 46 66)(35 55 47 67)(36 56 48 68)(37 57 49 69)(38 58 50 70)(39 59 41 61)(40 60 42 62)(111 144 124 131)(112 145 125 132)(113 146 126 133)(114 147 127 134)(115 148 128 135)(116 149 129 136)(117 150 130 137)(118 141 121 138)(119 142 122 139)(120 143 123 140)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 61)(8 62)(9 63)(10 64)(11 126)(12 127)(13 128)(14 129)(15 130)(16 121)(17 122)(18 123)(19 124)(20 125)(21 54)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 51)(29 52)(30 53)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 81)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 132 25 150)(2 131 26 149)(3 140 27 148)(4 139 28 147)(5 138 29 146)(6 137 30 145)(7 136 21 144)(8 135 22 143)(9 134 23 142)(10 133 24 141)(11 49 158 32)(12 48 159 31)(13 47 160 40)(14 46 151 39)(15 45 152 38)(16 44 153 37)(17 43 154 36)(18 42 155 35)(19 41 156 34)(20 50 157 33)(51 107 68 99)(52 106 69 98)(53 105 70 97)(54 104 61 96)(55 103 62 95)(56 102 63 94)(57 101 64 93)(58 110 65 92)(59 109 66 91)(60 108 67 100)(71 127 89 119)(72 126 90 118)(73 125 81 117)(74 124 82 116)(75 123 83 115)(76 122 84 114)(77 121 85 113)(78 130 86 112)(79 129 87 111)(80 128 88 120)
(1 130 30 117)(2 129 21 116)(3 128 22 115)(4 127 23 114)(5 126 24 113)(6 125 25 112)(7 124 26 111)(8 123 27 120)(9 122 28 119)(10 121 29 118)(11 57 153 69)(12 56 154 68)(13 55 155 67)(14 54 156 66)(15 53 157 65)(16 52 158 64)(17 51 159 63)(18 60 160 62)(19 59 151 61)(20 58 152 70)(31 107 43 94)(32 106 44 93)(33 105 45 92)(34 104 46 91)(35 103 47 100)(36 102 48 99)(37 101 49 98)(38 110 50 97)(39 109 41 96)(40 108 42 95)(71 147 84 134)(72 146 85 133)(73 145 86 132)(74 144 87 131)(75 143 88 140)(76 142 89 139)(77 141 90 138)(78 150 81 137)(79 149 82 136)(80 148 83 135)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,86,30,73)(2,87,21,74)(3,88,22,75)(4,89,23,76)(5,90,24,77)(6,81,25,78)(7,82,26,79)(8,83,27,80)(9,84,28,71)(10,85,29,72)(11,106,153,93)(12,107,154,94)(13,108,155,95)(14,109,156,96)(15,110,157,97)(16,101,158,98)(17,102,159,99)(18,103,160,100)(19,104,151,91)(20,105,152,92)(31,51,43,63)(32,52,44,64)(33,53,45,65)(34,54,46,66)(35,55,47,67)(36,56,48,68)(37,57,49,69)(38,58,50,70)(39,59,41,61)(40,60,42,62)(111,144,124,131)(112,145,125,132)(113,146,126,133)(114,147,127,134)(115,148,128,135)(116,149,129,136)(117,150,130,137)(118,141,121,138)(119,142,122,139)(120,143,123,140), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,61)(8,62)(9,63)(10,64)(11,126)(12,127)(13,128)(14,129)(15,130)(16,121)(17,122)(18,123)(19,124)(20,125)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,51)(29,52)(30,53)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,81)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,132,25,150)(2,131,26,149)(3,140,27,148)(4,139,28,147)(5,138,29,146)(6,137,30,145)(7,136,21,144)(8,135,22,143)(9,134,23,142)(10,133,24,141)(11,49,158,32)(12,48,159,31)(13,47,160,40)(14,46,151,39)(15,45,152,38)(16,44,153,37)(17,43,154,36)(18,42,155,35)(19,41,156,34)(20,50,157,33)(51,107,68,99)(52,106,69,98)(53,105,70,97)(54,104,61,96)(55,103,62,95)(56,102,63,94)(57,101,64,93)(58,110,65,92)(59,109,66,91)(60,108,67,100)(71,127,89,119)(72,126,90,118)(73,125,81,117)(74,124,82,116)(75,123,83,115)(76,122,84,114)(77,121,85,113)(78,130,86,112)(79,129,87,111)(80,128,88,120), (1,130,30,117)(2,129,21,116)(3,128,22,115)(4,127,23,114)(5,126,24,113)(6,125,25,112)(7,124,26,111)(8,123,27,120)(9,122,28,119)(10,121,29,118)(11,57,153,69)(12,56,154,68)(13,55,155,67)(14,54,156,66)(15,53,157,65)(16,52,158,64)(17,51,159,63)(18,60,160,62)(19,59,151,61)(20,58,152,70)(31,107,43,94)(32,106,44,93)(33,105,45,92)(34,104,46,91)(35,103,47,100)(36,102,48,99)(37,101,49,98)(38,110,50,97)(39,109,41,96)(40,108,42,95)(71,147,84,134)(72,146,85,133)(73,145,86,132)(74,144,87,131)(75,143,88,140)(76,142,89,139)(77,141,90,138)(78,150,81,137)(79,149,82,136)(80,148,83,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,86,30,73)(2,87,21,74)(3,88,22,75)(4,89,23,76)(5,90,24,77)(6,81,25,78)(7,82,26,79)(8,83,27,80)(9,84,28,71)(10,85,29,72)(11,106,153,93)(12,107,154,94)(13,108,155,95)(14,109,156,96)(15,110,157,97)(16,101,158,98)(17,102,159,99)(18,103,160,100)(19,104,151,91)(20,105,152,92)(31,51,43,63)(32,52,44,64)(33,53,45,65)(34,54,46,66)(35,55,47,67)(36,56,48,68)(37,57,49,69)(38,58,50,70)(39,59,41,61)(40,60,42,62)(111,144,124,131)(112,145,125,132)(113,146,126,133)(114,147,127,134)(115,148,128,135)(116,149,129,136)(117,150,130,137)(118,141,121,138)(119,142,122,139)(120,143,123,140), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,61)(8,62)(9,63)(10,64)(11,126)(12,127)(13,128)(14,129)(15,130)(16,121)(17,122)(18,123)(19,124)(20,125)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,51)(29,52)(30,53)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,81)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,132,25,150)(2,131,26,149)(3,140,27,148)(4,139,28,147)(5,138,29,146)(6,137,30,145)(7,136,21,144)(8,135,22,143)(9,134,23,142)(10,133,24,141)(11,49,158,32)(12,48,159,31)(13,47,160,40)(14,46,151,39)(15,45,152,38)(16,44,153,37)(17,43,154,36)(18,42,155,35)(19,41,156,34)(20,50,157,33)(51,107,68,99)(52,106,69,98)(53,105,70,97)(54,104,61,96)(55,103,62,95)(56,102,63,94)(57,101,64,93)(58,110,65,92)(59,109,66,91)(60,108,67,100)(71,127,89,119)(72,126,90,118)(73,125,81,117)(74,124,82,116)(75,123,83,115)(76,122,84,114)(77,121,85,113)(78,130,86,112)(79,129,87,111)(80,128,88,120), (1,130,30,117)(2,129,21,116)(3,128,22,115)(4,127,23,114)(5,126,24,113)(6,125,25,112)(7,124,26,111)(8,123,27,120)(9,122,28,119)(10,121,29,118)(11,57,153,69)(12,56,154,68)(13,55,155,67)(14,54,156,66)(15,53,157,65)(16,52,158,64)(17,51,159,63)(18,60,160,62)(19,59,151,61)(20,58,152,70)(31,107,43,94)(32,106,44,93)(33,105,45,92)(34,104,46,91)(35,103,47,100)(36,102,48,99)(37,101,49,98)(38,110,50,97)(39,109,41,96)(40,108,42,95)(71,147,84,134)(72,146,85,133)(73,145,86,132)(74,144,87,131)(75,143,88,140)(76,142,89,139)(77,141,90,138)(78,150,81,137)(79,149,82,136)(80,148,83,135) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,86,30,73),(2,87,21,74),(3,88,22,75),(4,89,23,76),(5,90,24,77),(6,81,25,78),(7,82,26,79),(8,83,27,80),(9,84,28,71),(10,85,29,72),(11,106,153,93),(12,107,154,94),(13,108,155,95),(14,109,156,96),(15,110,157,97),(16,101,158,98),(17,102,159,99),(18,103,160,100),(19,104,151,91),(20,105,152,92),(31,51,43,63),(32,52,44,64),(33,53,45,65),(34,54,46,66),(35,55,47,67),(36,56,48,68),(37,57,49,69),(38,58,50,70),(39,59,41,61),(40,60,42,62),(111,144,124,131),(112,145,125,132),(113,146,126,133),(114,147,127,134),(115,148,128,135),(116,149,129,136),(117,150,130,137),(118,141,121,138),(119,142,122,139),(120,143,123,140)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,61),(8,62),(9,63),(10,64),(11,126),(12,127),(13,128),(14,129),(15,130),(16,121),(17,122),(18,123),(19,124),(20,125),(21,54),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,51),(29,52),(30,53),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,81),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,132,25,150),(2,131,26,149),(3,140,27,148),(4,139,28,147),(5,138,29,146),(6,137,30,145),(7,136,21,144),(8,135,22,143),(9,134,23,142),(10,133,24,141),(11,49,158,32),(12,48,159,31),(13,47,160,40),(14,46,151,39),(15,45,152,38),(16,44,153,37),(17,43,154,36),(18,42,155,35),(19,41,156,34),(20,50,157,33),(51,107,68,99),(52,106,69,98),(53,105,70,97),(54,104,61,96),(55,103,62,95),(56,102,63,94),(57,101,64,93),(58,110,65,92),(59,109,66,91),(60,108,67,100),(71,127,89,119),(72,126,90,118),(73,125,81,117),(74,124,82,116),(75,123,83,115),(76,122,84,114),(77,121,85,113),(78,130,86,112),(79,129,87,111),(80,128,88,120)], [(1,130,30,117),(2,129,21,116),(3,128,22,115),(4,127,23,114),(5,126,24,113),(6,125,25,112),(7,124,26,111),(8,123,27,120),(9,122,28,119),(10,121,29,118),(11,57,153,69),(12,56,154,68),(13,55,155,67),(14,54,156,66),(15,53,157,65),(16,52,158,64),(17,51,159,63),(18,60,160,62),(19,59,151,61),(20,58,152,70),(31,107,43,94),(32,106,44,93),(33,105,45,92),(34,104,46,91),(35,103,47,100),(36,102,48,99),(37,101,49,98),(38,110,50,97),(39,109,41,96),(40,108,42,95),(71,147,84,134),(72,146,85,133),(73,145,86,132),(74,144,87,131),(75,143,88,140),(76,142,89,139),(77,141,90,138),(78,150,81,137),(79,149,82,136),(80,148,83,135)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 34 | 0 | 0 |
| 0 | 0 | 6 | 35 | 0 | 0 |
| 0 | 0 | 34 | 0 | 34 | 34 |
| 0 | 0 | 1 | 7 | 7 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 1 | 25 | 25 |
| 0 | 0 | 3 | 18 | 0 | 39 |
| 0 | 0 | 35 | 40 | 17 | 40 |
| 0 | 0 | 17 | 0 | 17 | 40 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 1 |
| 0 | 0 | 34 | 40 | 39 | 34 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 14 | 2 | 22 | 37 |
| 0 | 0 | 38 | 23 | 28 | 15 |
| 0 | 0 | 6 | 0 | 39 | 6 |
| 0 | 0 | 29 | 39 | 39 | 6 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 27 | 28 | 0 | 0 |
| 0 | 0 | 12 | 14 | 0 | 0 |
| 0 | 0 | 18 | 0 | 28 | 18 |
| 0 | 0 | 27 | 13 | 27 | 13 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,6,34,1,0,0,34,35,0,7,0,0,0,0,34,7,0,0,0,0,34,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,7,3,35,17,0,0,1,18,40,0,0,0,25,0,17,17,0,0,25,39,40,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,34,0,1,0,0,0,40,0,0,0,0,40,39,1,1,0,0,1,34,0,0],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,14,38,6,29,0,0,2,23,0,39,0,0,22,28,39,39,0,0,37,15,6,6],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,27,12,18,27,0,0,28,14,0,13,0,0,0,0,28,27,0,0,0,0,18,13] >;
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | 2+ (1+4) | 2- (1+4) | D4⋊2D5 | D4⋊6D10 | D4.10D10 |
| kernel | C10.702- (1+4) | Dic5.14D4 | C23.D10 | Dic5.Q8 | C2×C10.D4 | C20.48D4 | D4×Dic5 | C23.18D10 | C5×C4⋊D4 | C4⋊D4 | C2×C10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C10 | C22 | C2 | C2 |
| # reps | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 4 | 1 | 2 | 4 | 4 | 2 | 2 | 6 | 1 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_{10}._{70}2_-^{(1+4)} % in TeX
G:=Group("C10.70ES-(2,2)"); // GroupNames label
G:=SmallGroup(320,1274);
// by ID
G=gap.SmallGroup(320,1274);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,219,675,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=a^5*b^2,e^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a^5*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations