Copied to
clipboard

?

G = C4⋊C426D10order 320 = 26·5

9th semidirect product of C4⋊C4 and D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C426D10, (C4×D5)⋊13D4, (C2×Q8)⋊15D10, C4.186(D4×D5), C22⋊Q826D5, D104(C4○D4), C207D435C2, C42D2023C2, D10.76(C2×D4), C20.231(C2×D4), C22⋊D2015C2, D208C424C2, (Q8×C10)⋊6C22, D103Q813C2, (C2×D20)⋊24C22, C4⋊Dic535C22, C22⋊C4.56D10, C10.73(C22×D4), Dic54D414C2, (C2×C10).171C24, (C2×C20).598C23, Dic5.119(C2×D4), C55(C22.19C24), C221(Q82D5), (C4×Dic5)⋊27C22, (C22×C4).372D10, D10.13D415C2, D10⋊C419C22, C10.D417C22, (C2×Dic5).86C23, C22.192(C23×D5), C23.188(C22×D5), (C22×C10).199C23, (C22×C20).251C22, (C22×D5).203C23, (C23×D5).121C22, (C22×Dic5).248C22, C2.46(C2×D4×D5), (D5×C22×C4)⋊5C2, C2.48(D5×C4○D4), (C2×C4×D5)⋊17C22, C4⋊C47D524C2, (C5×C22⋊Q8)⋊7C2, (C2×C10)⋊6(C4○D4), (C5×C4⋊C4)⋊18C22, (C2×Q82D5)⋊5C2, C10.160(C2×C4○D4), C2.16(C2×Q82D5), (C2×C4).46(C22×D5), (C2×C5⋊D4).38C22, (C5×C22⋊C4).26C22, SmallGroup(320,1299)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4⋊C426D10
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C4⋊C426D10
C5C2×C10 — C4⋊C426D10

Subgroups: 1294 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2 [×3], C2 [×8], C4 [×2], C4 [×10], C22, C22 [×2], C22 [×24], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×22], D4 [×14], Q8 [×2], C23, C23 [×10], D5 [×6], C10 [×3], C10 [×2], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×3], C22×C4, C22×C4 [×11], C2×D4 [×7], C2×Q8, C4○D4 [×4], C24, Dic5 [×2], Dic5 [×3], C20 [×2], C20 [×5], D10 [×4], D10 [×18], C2×C10, C2×C10 [×2], C2×C10 [×2], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8, C22⋊Q8, C22.D4 [×2], C23×C4, C2×C4○D4, C4×D5 [×4], C4×D5 [×10], D20 [×10], C2×Dic5 [×2], C2×Dic5 [×2], C2×Dic5 [×2], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5 [×2], C22×D5 [×2], C22×D5 [×6], C22×C10, C22.19C24, C4×Dic5 [×2], C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×8], C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×C4×D5 [×4], C2×C4×D5 [×2], C2×C4×D5 [×4], C2×D20, C2×D20 [×4], Q82D5 [×4], C22×Dic5, C2×C5⋊D4 [×2], C22×C20, Q8×C10, C23×D5, Dic54D4 [×2], C22⋊D20 [×2], C4⋊C47D5, D208C4 [×2], D10.13D4 [×2], C42D20, C207D4, D103Q8, C5×C22⋊Q8, D5×C22×C4, C2×Q82D5, C4⋊C426D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22×D4, C2×C4○D4 [×2], C22×D5 [×7], C22.19C24, D4×D5 [×2], Q82D5 [×2], C23×D5, C2×D4×D5, C2×Q82D5, D5×C4○D4, C4⋊C426D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b-1, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 80 points
Generators in S80
(1 53 13 43)(2 54 14 44)(3 55 15 45)(4 56 16 46)(5 57 17 47)(6 58 18 48)(7 59 19 49)(8 60 20 50)(9 51 11 41)(10 52 12 42)(21 75 26 80)(22 76 27 71)(23 77 28 72)(24 78 29 73)(25 79 30 74)(31 67 36 62)(32 68 37 63)(33 69 38 64)(34 70 39 65)(35 61 40 66)
(1 33 6 29)(2 25 7 39)(3 35 8 21)(4 27 9 31)(5 37 10 23)(11 36 16 22)(12 28 17 32)(13 38 18 24)(14 30 19 34)(15 40 20 26)(41 67 46 71)(42 77 47 63)(43 69 48 73)(44 79 49 65)(45 61 50 75)(51 62 56 76)(52 72 57 68)(53 64 58 78)(54 74 59 70)(55 66 60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 14)(12 13)(15 20)(16 19)(17 18)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(41 44)(42 43)(45 50)(46 49)(47 48)(51 54)(52 53)(55 60)(56 59)(57 58)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)

G:=sub<Sym(80)| (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,75,26,80)(22,76,27,71)(23,77,28,72)(24,78,29,73)(25,79,30,74)(31,67,36,62)(32,68,37,63)(33,69,38,64)(34,70,39,65)(35,61,40,66), (1,33,6,29)(2,25,7,39)(3,35,8,21)(4,27,9,31)(5,37,10,23)(11,36,16,22)(12,28,17,32)(13,38,18,24)(14,30,19,34)(15,40,20,26)(41,67,46,71)(42,77,47,63)(43,69,48,73)(44,79,49,65)(45,61,50,75)(51,62,56,76)(52,72,57,68)(53,64,58,78)(54,74,59,70)(55,66,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)>;

G:=Group( (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,75,26,80)(22,76,27,71)(23,77,28,72)(24,78,29,73)(25,79,30,74)(31,67,36,62)(32,68,37,63)(33,69,38,64)(34,70,39,65)(35,61,40,66), (1,33,6,29)(2,25,7,39)(3,35,8,21)(4,27,9,31)(5,37,10,23)(11,36,16,22)(12,28,17,32)(13,38,18,24)(14,30,19,34)(15,40,20,26)(41,67,46,71)(42,77,47,63)(43,69,48,73)(44,79,49,65)(45,61,50,75)(51,62,56,76)(52,72,57,68)(53,64,58,78)(54,74,59,70)(55,66,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71) );

G=PermutationGroup([(1,53,13,43),(2,54,14,44),(3,55,15,45),(4,56,16,46),(5,57,17,47),(6,58,18,48),(7,59,19,49),(8,60,20,50),(9,51,11,41),(10,52,12,42),(21,75,26,80),(22,76,27,71),(23,77,28,72),(24,78,29,73),(25,79,30,74),(31,67,36,62),(32,68,37,63),(33,69,38,64),(34,70,39,65),(35,61,40,66)], [(1,33,6,29),(2,25,7,39),(3,35,8,21),(4,27,9,31),(5,37,10,23),(11,36,16,22),(12,28,17,32),(13,38,18,24),(14,30,19,34),(15,40,20,26),(41,67,46,71),(42,77,47,63),(43,69,48,73),(44,79,49,65),(45,61,50,75),(51,62,56,76),(52,72,57,68),(53,64,58,78),(54,74,59,70),(55,66,60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13),(15,20),(16,19),(17,18),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(41,44),(42,43),(45,50),(46,49),(47,48),(51,54),(52,53),(55,60),(56,59),(57,58),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0032000
0032900
000010
000001
,
4000000
0400000
0013900
0014000
000001
0000400
,
34350000
700000
0040000
0004000
0000400
000001
,
710000
34340000
0040000
0040100
0000400
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,32,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,39,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[34,7,0,0,0,0,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[7,34,0,0,0,0,1,34,0,0,0,0,0,0,40,40,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222222244444444444444445510···101010101020···2020···20
size11112210101010202022224444555510102020222···244444···48···8

56 irreducible representations

dim11111111111122222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4C4○D4D10D10D10D10D4×D5Q82D5D5×C4○D4
kernelC4⋊C426D10Dic54D4C22⋊D20C4⋊C47D5D208C4D10.13D4C42D20C207D4D103Q8C5×C22⋊Q8D5×C22×C4C2×Q82D5C4×D5C22⋊Q8D10C2×C10C22⋊C4C4⋊C4C22×C4C2×Q8C4C22C2
# reps12212211111142444622444

In GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{26}D_{10}
% in TeX

G:=Group("C4:C4:26D10");
// GroupNames label

G:=SmallGroup(320,1299);
// by ID

G=gap.SmallGroup(320,1299);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,1123,794,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽