metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.162- (1+4), C20⋊Q8⋊24C2, C22⋊Q8⋊5D5, C4⋊C4.95D10, (C4×D5).11D4, C4.187(D4×D5), D10.77(C2×D4), C20.232(C2×D4), D10⋊2Q8⋊24C2, D10⋊3Q8⋊14C2, (C2×C20).52C23, (C2×Q8).124D10, C22⋊C4.14D10, Dic5.19(C2×D4), C10.74(C22×D4), C20.48D4⋊36C2, (C2×C10).172C24, (C22×C4).234D10, D10.13D4⋊16C2, D10.12D4⋊24C2, Dic5.5D4⋊24C2, (C2×D20).229C22, C4⋊Dic5.213C22, (Q8×C10).105C22, (C2×Dic5).87C23, C22.193(C23×D5), C23.117(C22×D5), C23.D5.33C22, D10⋊C4.21C22, (C22×C10).200C23, (C22×C20).252C22, C5⋊2(C23.38C23), (C4×Dic5).112C22, C10.D4.25C22, (C22×D5).204C23, C2.35(D4.10D10), C2.17(Q8.10D10), (C2×Dic10).254C22, (C2×Q8×D5)⋊6C2, C2.47(C2×D4×D5), C4⋊C4⋊7D5⋊25C2, (C5×C22⋊Q8)⋊8C2, (C2×C4○D20).20C2, (C2×C4×D5).102C22, (C5×C4⋊C4).156C22, (C2×C4).590(C22×D5), (C2×C5⋊D4).128C22, (C5×C22⋊C4).27C22, SmallGroup(320,1300)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 958 in 270 conjugacy classes, 103 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×10], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×18], D4 [×6], Q8 [×10], C23, C23 [×2], D5 [×3], C10 [×3], C10, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×7], C22×C4, C22×C4 [×4], C2×D4 [×3], C2×Q8, C2×Q8 [×8], C4○D4 [×4], Dic5 [×2], Dic5 [×5], C20 [×2], C20 [×5], D10 [×2], D10 [×5], C2×C10, C2×C10 [×3], C42⋊C2, C22⋊Q8, C22⋊Q8 [×3], C22.D4 [×4], C4.4D4 [×2], C4⋊Q8 [×2], C22×Q8, C2×C4○D4, Dic10 [×8], C4×D5 [×4], C4×D5 [×6], D20 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5 [×2], C22×C10, C23.38C23, C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4 [×6], C23.D5 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10 [×2], C2×Dic10 [×2], C2×C4×D5 [×2], C2×C4×D5 [×2], C2×D20, C4○D20 [×4], Q8×D5 [×4], C2×C5⋊D4 [×2], C22×C20, Q8×C10, D10.12D4 [×2], Dic5.5D4 [×2], C20⋊Q8 [×2], C4⋊C4⋊7D5, D10.13D4 [×2], D10⋊2Q8, C20.48D4, D10⋊3Q8, C5×C22⋊Q8, C2×C4○D20, C2×Q8×D5, C10.162- (1+4)
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2- (1+4) [×2], C22×D5 [×7], C23.38C23, D4×D5 [×2], C23×D5, C2×D4×D5, Q8.10D10, D4.10D10, C10.162- (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=c2=1, d2=e2=b2, ab=ba, cac=dad-1=a-1, ae=ea, cbc=b-1, dbd-1=a5b, be=eb, dcd-1=a5c, ce=ec, ede-1=b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 113 13 103)(2 114 14 104)(3 115 15 105)(4 116 16 106)(5 117 17 107)(6 118 18 108)(7 119 19 109)(8 120 20 110)(9 111 11 101)(10 112 12 102)(21 91 31 81)(22 92 32 82)(23 93 33 83)(24 94 34 84)(25 95 35 85)(26 96 36 86)(27 97 37 87)(28 98 38 88)(29 99 39 89)(30 100 40 90)(41 156 51 146)(42 157 52 147)(43 158 53 148)(44 159 54 149)(45 160 55 150)(46 151 56 141)(47 152 57 142)(48 153 58 143)(49 154 59 144)(50 155 60 145)(61 136 71 126)(62 137 72 127)(63 138 73 128)(64 139 74 129)(65 140 75 130)(66 131 76 121)(67 132 77 122)(68 133 78 123)(69 134 79 124)(70 135 80 125)
(1 13)(2 12)(3 11)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(21 25)(22 24)(26 30)(27 29)(31 35)(32 34)(36 40)(37 39)(41 50)(42 49)(43 48)(44 47)(45 46)(51 60)(52 59)(53 58)(54 57)(55 56)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 95)(82 94)(83 93)(84 92)(85 91)(86 100)(87 99)(88 98)(89 97)(90 96)(101 105)(102 104)(106 110)(107 109)(111 115)(112 114)(116 120)(117 119)(121 130)(122 129)(123 128)(124 127)(125 126)(131 140)(132 139)(133 138)(134 137)(135 136)(141 160)(142 159)(143 158)(144 157)(145 156)(146 155)(147 154)(148 153)(149 152)(150 151)
(1 153 13 143)(2 152 14 142)(3 151 15 141)(4 160 16 150)(5 159 17 149)(6 158 18 148)(7 157 19 147)(8 156 20 146)(9 155 11 145)(10 154 12 144)(21 125 31 135)(22 124 32 134)(23 123 33 133)(24 122 34 132)(25 121 35 131)(26 130 36 140)(27 129 37 139)(28 128 38 138)(29 127 39 137)(30 126 40 136)(41 115 51 105)(42 114 52 104)(43 113 53 103)(44 112 54 102)(45 111 55 101)(46 120 56 110)(47 119 57 109)(48 118 58 108)(49 117 59 107)(50 116 60 106)(61 85 71 95)(62 84 72 94)(63 83 73 93)(64 82 74 92)(65 81 75 91)(66 90 76 100)(67 89 77 99)(68 88 78 98)(69 87 79 97)(70 86 80 96)
(1 93 13 83)(2 94 14 84)(3 95 15 85)(4 96 16 86)(5 97 17 87)(6 98 18 88)(7 99 19 89)(8 100 20 90)(9 91 11 81)(10 92 12 82)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,113,13,103)(2,114,14,104)(3,115,15,105)(4,116,16,106)(5,117,17,107)(6,118,18,108)(7,119,19,109)(8,120,20,110)(9,111,11,101)(10,112,12,102)(21,91,31,81)(22,92,32,82)(23,93,33,83)(24,94,34,84)(25,95,35,85)(26,96,36,86)(27,97,37,87)(28,98,38,88)(29,99,39,89)(30,100,40,90)(41,156,51,146)(42,157,52,147)(43,158,53,148)(44,159,54,149)(45,160,55,150)(46,151,56,141)(47,152,57,142)(48,153,58,143)(49,154,59,144)(50,155,60,145)(61,136,71,126)(62,137,72,127)(63,138,73,128)(64,139,74,129)(65,140,75,130)(66,131,76,121)(67,132,77,122)(68,133,78,123)(69,134,79,124)(70,135,80,125), (1,13)(2,12)(3,11)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(21,25)(22,24)(26,30)(27,29)(31,35)(32,34)(36,40)(37,39)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,95)(82,94)(83,93)(84,92)(85,91)(86,100)(87,99)(88,98)(89,97)(90,96)(101,105)(102,104)(106,110)(107,109)(111,115)(112,114)(116,120)(117,119)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)(148,153)(149,152)(150,151), (1,153,13,143)(2,152,14,142)(3,151,15,141)(4,160,16,150)(5,159,17,149)(6,158,18,148)(7,157,19,147)(8,156,20,146)(9,155,11,145)(10,154,12,144)(21,125,31,135)(22,124,32,134)(23,123,33,133)(24,122,34,132)(25,121,35,131)(26,130,36,140)(27,129,37,139)(28,128,38,138)(29,127,39,137)(30,126,40,136)(41,115,51,105)(42,114,52,104)(43,113,53,103)(44,112,54,102)(45,111,55,101)(46,120,56,110)(47,119,57,109)(48,118,58,108)(49,117,59,107)(50,116,60,106)(61,85,71,95)(62,84,72,94)(63,83,73,93)(64,82,74,92)(65,81,75,91)(66,90,76,100)(67,89,77,99)(68,88,78,98)(69,87,79,97)(70,86,80,96), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,113,13,103)(2,114,14,104)(3,115,15,105)(4,116,16,106)(5,117,17,107)(6,118,18,108)(7,119,19,109)(8,120,20,110)(9,111,11,101)(10,112,12,102)(21,91,31,81)(22,92,32,82)(23,93,33,83)(24,94,34,84)(25,95,35,85)(26,96,36,86)(27,97,37,87)(28,98,38,88)(29,99,39,89)(30,100,40,90)(41,156,51,146)(42,157,52,147)(43,158,53,148)(44,159,54,149)(45,160,55,150)(46,151,56,141)(47,152,57,142)(48,153,58,143)(49,154,59,144)(50,155,60,145)(61,136,71,126)(62,137,72,127)(63,138,73,128)(64,139,74,129)(65,140,75,130)(66,131,76,121)(67,132,77,122)(68,133,78,123)(69,134,79,124)(70,135,80,125), (1,13)(2,12)(3,11)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(21,25)(22,24)(26,30)(27,29)(31,35)(32,34)(36,40)(37,39)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,95)(82,94)(83,93)(84,92)(85,91)(86,100)(87,99)(88,98)(89,97)(90,96)(101,105)(102,104)(106,110)(107,109)(111,115)(112,114)(116,120)(117,119)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)(148,153)(149,152)(150,151), (1,153,13,143)(2,152,14,142)(3,151,15,141)(4,160,16,150)(5,159,17,149)(6,158,18,148)(7,157,19,147)(8,156,20,146)(9,155,11,145)(10,154,12,144)(21,125,31,135)(22,124,32,134)(23,123,33,133)(24,122,34,132)(25,121,35,131)(26,130,36,140)(27,129,37,139)(28,128,38,138)(29,127,39,137)(30,126,40,136)(41,115,51,105)(42,114,52,104)(43,113,53,103)(44,112,54,102)(45,111,55,101)(46,120,56,110)(47,119,57,109)(48,118,58,108)(49,117,59,107)(50,116,60,106)(61,85,71,95)(62,84,72,94)(63,83,73,93)(64,82,74,92)(65,81,75,91)(66,90,76,100)(67,89,77,99)(68,88,78,98)(69,87,79,97)(70,86,80,96), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,113,13,103),(2,114,14,104),(3,115,15,105),(4,116,16,106),(5,117,17,107),(6,118,18,108),(7,119,19,109),(8,120,20,110),(9,111,11,101),(10,112,12,102),(21,91,31,81),(22,92,32,82),(23,93,33,83),(24,94,34,84),(25,95,35,85),(26,96,36,86),(27,97,37,87),(28,98,38,88),(29,99,39,89),(30,100,40,90),(41,156,51,146),(42,157,52,147),(43,158,53,148),(44,159,54,149),(45,160,55,150),(46,151,56,141),(47,152,57,142),(48,153,58,143),(49,154,59,144),(50,155,60,145),(61,136,71,126),(62,137,72,127),(63,138,73,128),(64,139,74,129),(65,140,75,130),(66,131,76,121),(67,132,77,122),(68,133,78,123),(69,134,79,124),(70,135,80,125)], [(1,13),(2,12),(3,11),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(21,25),(22,24),(26,30),(27,29),(31,35),(32,34),(36,40),(37,39),(41,50),(42,49),(43,48),(44,47),(45,46),(51,60),(52,59),(53,58),(54,57),(55,56),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,95),(82,94),(83,93),(84,92),(85,91),(86,100),(87,99),(88,98),(89,97),(90,96),(101,105),(102,104),(106,110),(107,109),(111,115),(112,114),(116,120),(117,119),(121,130),(122,129),(123,128),(124,127),(125,126),(131,140),(132,139),(133,138),(134,137),(135,136),(141,160),(142,159),(143,158),(144,157),(145,156),(146,155),(147,154),(148,153),(149,152),(150,151)], [(1,153,13,143),(2,152,14,142),(3,151,15,141),(4,160,16,150),(5,159,17,149),(6,158,18,148),(7,157,19,147),(8,156,20,146),(9,155,11,145),(10,154,12,144),(21,125,31,135),(22,124,32,134),(23,123,33,133),(24,122,34,132),(25,121,35,131),(26,130,36,140),(27,129,37,139),(28,128,38,138),(29,127,39,137),(30,126,40,136),(41,115,51,105),(42,114,52,104),(43,113,53,103),(44,112,54,102),(45,111,55,101),(46,120,56,110),(47,119,57,109),(48,118,58,108),(49,117,59,107),(50,116,60,106),(61,85,71,95),(62,84,72,94),(63,83,73,93),(64,82,74,92),(65,81,75,91),(66,90,76,100),(67,89,77,99),(68,88,78,98),(69,87,79,97),(70,86,80,96)], [(1,93,13,83),(2,94,14,84),(3,95,15,85),(4,96,16,86),(5,97,17,87),(6,98,18,88),(7,99,19,89),(8,100,20,90),(9,91,11,81),(10,92,12,82),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 34 | 34 | 0 | 0 |
| 0 | 0 | 7 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 34 | 34 |
| 0 | 0 | 0 | 0 | 7 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 27 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 11 | 9 | 0 | 0 |
| 0 | 0 | 32 | 30 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 9 |
| 0 | 0 | 0 | 0 | 32 | 30 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 27 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 7 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 34 | 40 |
| 35 | 5 | 0 | 0 | 0 | 0 |
| 34 | 6 | 0 | 0 | 0 | 0 |
| 0 | 0 | 26 | 25 | 38 | 0 |
| 0 | 0 | 7 | 15 | 21 | 3 |
| 0 | 0 | 38 | 0 | 26 | 25 |
| 0 | 0 | 21 | 3 | 7 | 15 |
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 9 |
| 0 | 0 | 0 | 0 | 32 | 30 |
| 0 | 0 | 11 | 9 | 0 | 0 |
| 0 | 0 | 32 | 30 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,34,1],[1,27,0,0,0,0,0,40,0,0,0,0,0,0,11,32,0,0,0,0,9,30,0,0,0,0,0,0,11,32,0,0,0,0,9,30],[1,27,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,0,1,0,0,0,0,0,0,1,34,0,0,0,0,0,40],[35,34,0,0,0,0,5,6,0,0,0,0,0,0,26,7,38,21,0,0,25,15,0,3,0,0,38,21,26,7,0,0,0,3,25,15],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,11,32,0,0,0,0,9,30,0,0,11,32,0,0,0,0,9,30,0,0] >;
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | ··· | 4N | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 10 | 10 | 20 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | D10 | 2- (1+4) | D4×D5 | Q8.10D10 | D4.10D10 |
| kernel | C10.162- (1+4) | D10.12D4 | Dic5.5D4 | C20⋊Q8 | C4⋊C4⋊7D5 | D10.13D4 | D10⋊2Q8 | C20.48D4 | D10⋊3Q8 | C5×C22⋊Q8 | C2×C4○D20 | C2×Q8×D5 | C4×D5 | C22⋊Q8 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C10 | C4 | C2 | C2 |
| # reps | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 6 | 2 | 2 | 2 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_{10}._{16}2_-^{(1+4)} % in TeX
G:=Group("C10.16ES-(2,2)"); // GroupNames label
G:=SmallGroup(320,1300);
// by ID
G=gap.SmallGroup(320,1300);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=e^2=b^2,a*b=b*a,c*a*c=d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations