Copied to
clipboard

?

G = D10⋊M4(2)  order 320 = 26·5

1st semidirect product of D10 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D101M4(2), C5⋊C85D4, C2.7(D4×F5), C52(C89D4), C10.3(C4×D4), C20⋊C810C2, C22⋊C4.3F5, C23.7(C2×F5), C10.4(C8○D4), D10⋊C812C2, C2.7(D4.F5), D10⋊C4.2C4, Dic5.67(C2×D4), C10.D4.7C4, C23.2F55C2, Dic54D4.8C2, C10.11(C2×M4(2)), C10.C4210C2, Dic5.52(C4○D4), C22.70(C22×F5), C2.11(D5⋊M4(2)), (C4×Dic5).241C22, (C2×Dic5).324C23, (C22×Dic5).179C22, (C2×D5⋊C8)⋊9C2, (C2×C5⋊D4).5C4, (C2×C4).21(C2×F5), (C2×C20).79(C2×C4), (C5×C22⋊C4).4C4, (C2×C5⋊C8).22C22, (C2×C22.F5)⋊1C2, (C2×C4×D5).287C22, (C2×C10).32(C22×C4), (C22×C10).15(C2×C4), (C2×Dic5).49(C2×C4), (C22×D5).41(C2×C4), SmallGroup(320,1032)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D10⋊M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×D5⋊C8 — D10⋊M4(2)
C5C2×C10 — D10⋊M4(2)

Subgroups: 442 in 124 conjugacy classes, 46 normal (42 characteristic)
C1, C2 [×3], C2 [×3], C4 [×6], C22, C22 [×7], C5, C8 [×5], C2×C4 [×2], C2×C4 [×7], D4 [×2], C23, C23, D5 [×2], C10 [×3], C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8 [×6], M4(2) [×2], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C2×C10 [×3], C8⋊C4, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×2], C2×C20 [×2], C22×D5, C22×C10, C89D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, D5⋊C8 [×2], C2×C5⋊C8 [×4], C22.F5 [×2], C2×C4×D5, C22×Dic5, C2×C5⋊D4, C20⋊C8, C10.C42, D10⋊C8, C23.2F5, Dic54D4, C2×D5⋊C8, C2×C22.F5, D10⋊M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, M4(2) [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5 [×3], C89D4, C22×F5, D5⋊M4(2), D4.F5, D4×F5, D10⋊M4(2)

Generators and relations
 G = < a,b,c,d | a10=b2=c8=d2=1, bab=a-1, cac-1=a3, ad=da, cbc-1=a7b, dbd=a5b, dcd=c5 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10)(2 9)(3 8)(4 7)(5 6)(12 20)(13 19)(14 18)(15 17)(21 30)(22 29)(23 28)(24 27)(25 26)(31 38)(32 37)(33 36)(34 35)(39 40)(41 46)(42 45)(43 44)(47 50)(48 49)(51 53)(54 60)(55 59)(56 58)(61 65)(62 64)(66 70)(67 69)(71 73)(74 80)(75 79)(76 78)(81 85)(82 84)(86 90)(87 89)(91 98)(92 97)(93 96)(94 95)(99 100)(101 108)(102 107)(103 106)(104 105)(109 110)(111 118)(112 117)(113 116)(114 115)(119 120)(121 128)(122 127)(123 126)(124 125)(129 130)(131 133)(134 140)(135 139)(136 138)(141 143)(144 150)(145 149)(146 148)(151 153)(154 160)(155 159)(156 158)
(1 160 40 145 21 14 44 140)(2 157 39 148 22 11 43 133)(3 154 38 141 23 18 42 136)(4 151 37 144 24 15 41 139)(5 158 36 147 25 12 50 132)(6 155 35 150 26 19 49 135)(7 152 34 143 27 16 48 138)(8 159 33 146 28 13 47 131)(9 156 32 149 29 20 46 134)(10 153 31 142 30 17 45 137)(51 117 79 108 62 127 85 93)(52 114 78 101 63 124 84 96)(53 111 77 104 64 121 83 99)(54 118 76 107 65 128 82 92)(55 115 75 110 66 125 81 95)(56 112 74 103 67 122 90 98)(57 119 73 106 68 129 89 91)(58 116 72 109 69 126 88 94)(59 113 71 102 70 123 87 97)(60 120 80 105 61 130 86 100)
(1 60)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 117)(12 118)(13 119)(14 120)(15 111)(16 112)(17 113)(18 114)(19 115)(20 116)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 89)(48 90)(49 81)(50 82)(91 146)(92 147)(93 148)(94 149)(95 150)(96 141)(97 142)(98 143)(99 144)(100 145)(101 136)(102 137)(103 138)(104 139)(105 140)(106 131)(107 132)(108 133)(109 134)(110 135)(121 151)(122 152)(123 153)(124 154)(125 155)(126 156)(127 157)(128 158)(129 159)(130 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(12,20)(13,19)(14,18)(15,17)(21,30)(22,29)(23,28)(24,27)(25,26)(31,38)(32,37)(33,36)(34,35)(39,40)(41,46)(42,45)(43,44)(47,50)(48,49)(51,53)(54,60)(55,59)(56,58)(61,65)(62,64)(66,70)(67,69)(71,73)(74,80)(75,79)(76,78)(81,85)(82,84)(86,90)(87,89)(91,98)(92,97)(93,96)(94,95)(99,100)(101,108)(102,107)(103,106)(104,105)(109,110)(111,118)(112,117)(113,116)(114,115)(119,120)(121,128)(122,127)(123,126)(124,125)(129,130)(131,133)(134,140)(135,139)(136,138)(141,143)(144,150)(145,149)(146,148)(151,153)(154,160)(155,159)(156,158), (1,160,40,145,21,14,44,140)(2,157,39,148,22,11,43,133)(3,154,38,141,23,18,42,136)(4,151,37,144,24,15,41,139)(5,158,36,147,25,12,50,132)(6,155,35,150,26,19,49,135)(7,152,34,143,27,16,48,138)(8,159,33,146,28,13,47,131)(9,156,32,149,29,20,46,134)(10,153,31,142,30,17,45,137)(51,117,79,108,62,127,85,93)(52,114,78,101,63,124,84,96)(53,111,77,104,64,121,83,99)(54,118,76,107,65,128,82,92)(55,115,75,110,66,125,81,95)(56,112,74,103,67,122,90,98)(57,119,73,106,68,129,89,91)(58,116,72,109,69,126,88,94)(59,113,71,102,70,123,87,97)(60,120,80,105,61,130,86,100), (1,60)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,117)(12,118)(13,119)(14,120)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,146)(92,147)(93,148)(94,149)(95,150)(96,141)(97,142)(98,143)(99,144)(100,145)(101,136)(102,137)(103,138)(104,139)(105,140)(106,131)(107,132)(108,133)(109,134)(110,135)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(12,20)(13,19)(14,18)(15,17)(21,30)(22,29)(23,28)(24,27)(25,26)(31,38)(32,37)(33,36)(34,35)(39,40)(41,46)(42,45)(43,44)(47,50)(48,49)(51,53)(54,60)(55,59)(56,58)(61,65)(62,64)(66,70)(67,69)(71,73)(74,80)(75,79)(76,78)(81,85)(82,84)(86,90)(87,89)(91,98)(92,97)(93,96)(94,95)(99,100)(101,108)(102,107)(103,106)(104,105)(109,110)(111,118)(112,117)(113,116)(114,115)(119,120)(121,128)(122,127)(123,126)(124,125)(129,130)(131,133)(134,140)(135,139)(136,138)(141,143)(144,150)(145,149)(146,148)(151,153)(154,160)(155,159)(156,158), (1,160,40,145,21,14,44,140)(2,157,39,148,22,11,43,133)(3,154,38,141,23,18,42,136)(4,151,37,144,24,15,41,139)(5,158,36,147,25,12,50,132)(6,155,35,150,26,19,49,135)(7,152,34,143,27,16,48,138)(8,159,33,146,28,13,47,131)(9,156,32,149,29,20,46,134)(10,153,31,142,30,17,45,137)(51,117,79,108,62,127,85,93)(52,114,78,101,63,124,84,96)(53,111,77,104,64,121,83,99)(54,118,76,107,65,128,82,92)(55,115,75,110,66,125,81,95)(56,112,74,103,67,122,90,98)(57,119,73,106,68,129,89,91)(58,116,72,109,69,126,88,94)(59,113,71,102,70,123,87,97)(60,120,80,105,61,130,86,100), (1,60)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,117)(12,118)(13,119)(14,120)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,146)(92,147)(93,148)(94,149)(95,150)(96,141)(97,142)(98,143)(99,144)(100,145)(101,136)(102,137)(103,138)(104,139)(105,140)(106,131)(107,132)(108,133)(109,134)(110,135)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10),(2,9),(3,8),(4,7),(5,6),(12,20),(13,19),(14,18),(15,17),(21,30),(22,29),(23,28),(24,27),(25,26),(31,38),(32,37),(33,36),(34,35),(39,40),(41,46),(42,45),(43,44),(47,50),(48,49),(51,53),(54,60),(55,59),(56,58),(61,65),(62,64),(66,70),(67,69),(71,73),(74,80),(75,79),(76,78),(81,85),(82,84),(86,90),(87,89),(91,98),(92,97),(93,96),(94,95),(99,100),(101,108),(102,107),(103,106),(104,105),(109,110),(111,118),(112,117),(113,116),(114,115),(119,120),(121,128),(122,127),(123,126),(124,125),(129,130),(131,133),(134,140),(135,139),(136,138),(141,143),(144,150),(145,149),(146,148),(151,153),(154,160),(155,159),(156,158)], [(1,160,40,145,21,14,44,140),(2,157,39,148,22,11,43,133),(3,154,38,141,23,18,42,136),(4,151,37,144,24,15,41,139),(5,158,36,147,25,12,50,132),(6,155,35,150,26,19,49,135),(7,152,34,143,27,16,48,138),(8,159,33,146,28,13,47,131),(9,156,32,149,29,20,46,134),(10,153,31,142,30,17,45,137),(51,117,79,108,62,127,85,93),(52,114,78,101,63,124,84,96),(53,111,77,104,64,121,83,99),(54,118,76,107,65,128,82,92),(55,115,75,110,66,125,81,95),(56,112,74,103,67,122,90,98),(57,119,73,106,68,129,89,91),(58,116,72,109,69,126,88,94),(59,113,71,102,70,123,87,97),(60,120,80,105,61,130,86,100)], [(1,60),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,117),(12,118),(13,119),(14,120),(15,111),(16,112),(17,113),(18,114),(19,115),(20,116),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,89),(48,90),(49,81),(50,82),(91,146),(92,147),(93,148),(94,149),(95,150),(96,141),(97,142),(98,143),(99,144),(100,145),(101,136),(102,137),(103,138),(104,139),(105,140),(106,131),(107,132),(108,133),(109,134),(110,135),(121,151),(122,152),(123,153),(124,154),(125,155),(126,156),(127,157),(128,158),(129,159),(130,160)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0000401
0000400
0010400
0001400
,
4000000
010000
0001400
0010400
0000400
0000401
,
010000
100000
00241720
002617024
002401726
00021724
,
010000
100000
00223803
00019383
00338190
00303822

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,40,40,40,40,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,24,26,24,0,0,0,17,17,0,2,0,0,2,0,17,17,0,0,0,24,26,24],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,22,0,3,3,0,0,38,19,38,0,0,0,0,38,19,38,0,0,3,3,0,22] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C10D10E20A20B20C20D
order122222244444444458···88888101010101020202020
size11114101022455552020410···1020202020444888888

38 irreducible representations

dim1111111111112222444488
type++++++++++++-+
imageC1C2C2C2C2C2C2C2C4C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5C2×F5D5⋊M4(2)D4.F5D4×F5
kernelD10⋊M4(2)C20⋊C8C10.C42D10⋊C8C23.2F5Dic54D4C2×D5⋊C8C2×C22.F5C10.D4D10⋊C4C5×C22⋊C4C2×C5⋊D4C5⋊C8Dic5D10C10C22⋊C4C2×C4C23C2C2C2
# reps1111111122222244121411

In GAP, Magma, Sage, TeX

D_{10}\rtimes M_{4(2)}
% in TeX

G:=Group("D10:M4(2)");
// GroupNames label

G:=SmallGroup(320,1032);
// by ID

G=gap.SmallGroup(320,1032);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^3,a*d=d*a,c*b*c^-1=a^7*b,d*b*d=a^5*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽